We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Photoactivated Nanoparticles Block Pancreatic Cancer Growth and Metastasis in Mouse Models

By LabMedica International staff writers
Posted on 01 Feb 2016
Print article
Image: Liposomes are composite structures made of phospholipids and may contain small amounts of other molecules sequestered inside. Various targeting ligands may be attached to their exterior in order to allow their surface-attachment and accumulation in pathological areas (Photo courtesy of Wikimedia Commons).
Image: Liposomes are composite structures made of phospholipids and may contain small amounts of other molecules sequestered inside. Various targeting ligands may be attached to their exterior in order to allow their surface-attachment and accumulation in pathological areas (Photo courtesy of Wikimedia Commons).
A nanoparticle delivery system was used for the safe transport a photodynamic therapy (PDT) agent together with a highly toxic anti-cancer drug for the pinpoint treatment of pancreatic cancer.

Few nanoparticle drug delivery schemes have proven effective because cancer cells develop ways to resist and evade treatment. In order to "outsmart" the cancer cells, investigators at Harvard Medical School (Boston, MA, USA) developed a photoactivable multi-inhibitor nanoliposome (PMIL) delivery technique that imparted light-induced cytotoxicity together with a photo-initiated and sustained release of inhibitors that suppressed tumor re-growth and treatment escape signaling pathways.

The PMIL consisted of a nanoliposome doped with a photoactivable chromophore (benzoporphyrin derivative, BPD) in the lipid bilayer, and a nanoparticle containing the drug cabozantinib (XL184) - a multikinase inhibitor - encapsulated inside. Cabozantinib is a small molecule inhibitor of the tyrosine kinases Met (MET proto-oncogene, receptor tyrosine kinase) and VEGFR2 (vascular endothelial growth factor receptor 2), and has been shown to reduce tumor growth, metastasis, and angiogenesis. This drug is quite toxic requiring dose restrictions or treatment interruption.

Met is a receptor tyrosine kinase that stimulates cell scattering, invasion, protection from apoptosis, and angiogenesis. Mutations that cause deregulation of Met activity can cause a wide variety of different cancers, such as renal, gastric and small cell lung carcinomas, central nervous system tumors, as well as several sarcomas. VEGF is an important signaling protein involved in both vasculogenesis (the formation of the circulatory system) and angiogenesis (the growth of blood vessels from preexisting vasculature). When VEGF is overexpressed, it can contribute to the growth and spread of solid tumors.

In the current study, the investigators worked with two mouse pancreatic cancer models. Following intravenous PMIL administration the mice were treated with near-infrared tumor irradiation applied directly to the tumor sites via optical fibers.

The investigators reported in the January 18, 2016, online edition of the journal Nature Nanotechnology that the near-infrared light treatment triggered photodynamic damage of tumor cells and microvessels, and simultaneously initiated release of cabozantinib inside the tumor. A single PMIL treatment achieved prolonged tumor reduction in the two mouse pancreatic cancer models and also suppressed metastatic escape.

These results were obtained using cabozantinib at a dosage level less than one thousandth of what is normally used in oral therapy, with little or no toxicity.

"Right now we can say this approach has tremendous potential for patients with locally advanced pancreatic cancer, for whom surgery is not possible," said senior author Dr. Tayyaba Hasan, professor of dermatology at Harvard Medical School. "In our Phase I/II clinical studies with PDT alone, tumor destruction was achieved in all cases, and we have seen at least one case where PDT alone induced enough tumor shrinkage to enable follow-up surgery. The more robust tumor reduction and suppression of escape pathways possible with PMILs might enable curative surgery or improve the outcome of chemotherapy to enhance patient survival. But while we are encouraged by these results, this combination in a new nanoconstruct needs more validation before becoming a clinical treatment option."

Related Links:

Harvard Medical School


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.