We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Platelet Membrane-Coated Nanoparticles Kill Circulating Tumor Cells and Prevent Metastasis in Breast Cancer Model

By LabMedica International staff writers
Posted on 25 Nov 2015
Print article
Silica nanoparticles functionalized with activated platelet membranes along with surface conjugation of the tumor-specific apoptosis-inducing ligand cytokine TRAIL were shown to facilitate the destruction of circulating tumor cells (CTCs) and prevent the spread of the disease in a mouse breast cancer metastasis model.

Investigators at Cornell University (Ithaca, NY, USA) had shown in previous studies that (CTCs) became part of a "microenvironment" when they became physically associated with activated platelets and fibrin while being transported in the bloodstream.

To attack the tumor cells within this microenvironment, the investigators prepared synthetic silica nanoparticles coated with proteins from activated platelet membranes. Molecules of the cytokine TRAIL (tumor necrosis factor related apoptosis-inducing ligand) were attached to the surface of the particles.

TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells by binding to certain death receptors. Since the mid-1990s it has been used as the basis for several anti-cancer drugs, but had not been found to have any significant survival benefit.

The investigators reported in the October 21, 2015, online edition of the journal Biomaterials that their synthetic nanoparticles attached to "natural killer cells" in the blood which then became incorporated into CTC-associated micro-thrombi in blood vessels within the lungs. The ramped-up killer cells acted to dramatically decrease lung metastases in a mouse breast cancer metastasis model.

"In our research, we use nanoparticles— the liposomes we have created with TRAIL protein—and attach them to natural killer cells, to create what we call "super natural killer cells" and then these completely eliminate lymph node metastases in mice," said senior author Dr. Michael R. King, professor of biomedical engineering at Cornell University. "So, now we have technology to eliminate bloodstream metastasis—our previous work—and also lymph node metastases."

Related Links:

Cornell University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.