We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Nanoparticle Targeting May Revolutionize Cardiac Photoablation Therapy

By LabMedica International staff writers
Posted on 09 Nov 2015
Print article
Image: Micrographs show a cardiac myocyte cell (top) and an attached fibroblast cell (bottom) in a rat heart, after the injection of the newly developed nanoparticle. In the second frame, red light has been applied. The red coloring indicates that the myocyte, which causes cardiac arrhythmia, has been killed, while the fibroblast remains unharmed (Photo courtesy of the University of Michigan).
Image: Micrographs show a cardiac myocyte cell (top) and an attached fibroblast cell (bottom) in a rat heart, after the injection of the newly developed nanoparticle. In the second frame, red light has been applied. The red coloring indicates that the myocyte, which causes cardiac arrhythmia, has been killed, while the fibroblast remains unharmed (Photo courtesy of the University of Michigan).
A light-based therapeutic approach to correct cardiac arrhythmia has been improved by the development of a nanotechnique that allows precise delivery of photosensitive molecules to malfunctioning cardiomyocytes while avoiding normal cells.

Abnormal heartbeats, called arrhythmias, can be stopped by photoablation (light-induced killing), but the use of light energy to terminate malfunctioning cardiomyocytes runs the risk of damaging the other dozen or so cell types in the heart.

To increase the precision of the photoablation procedure investigators at the University of Michigan (Ann Arbor, USA) engineered a type of nanoparticle containing a cardiac-targeting peptide (CTP) and a photosensitizer, chlorin e6 (Ce6), for specific delivery to myocytes. After uptake by myoctes, low energy laser light introduced through a catheter destroyed only the cells that had absorbed the nanoparticles, leaving the other heart cells unharmed.

The investigators reported in the October 28, 2015, online edition of the journal Science Translational Medicine that they confirmed the specificity of the method in vitro using adult rat heart cell and human stem cell–derived cardiomyocyte and fibroblast co-cultures. In vivo, the CTP-Ce6 nanoparticles were injected intravenously into rats and, upon laser illumination of the heart, induced localized, myocyte-specific ablation with 85% efficiency, restoring sinus rhythm without collateral damage to other cell types in the heart, such as fibroblasts. In both sheep and rat hearts ex vivo, upon perfusion of CTP-Ce6 particles, laser illumination led to the formation of a complete electrical block at the ablated region and restored the physiological rhythm of the heart.

"In our cancer work, we used nanoparticles that were about 120 nanometers in size," said contributing author Dr. Raoul Kopelman, professor of chemistry, physics, and applied physics at the University of Michigan. "To work inside the heart, we needed to develop a particle that did the same job but was only six nanometers in size. The great thing about this treatment is that it is precise down to the level of individual cells. Drugs spread all over the body and high-power lasers char the tissue in the heart. This treatment is much easier and much safer."

Related Links:

University of Michigan


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.