We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




High Fat Diet Corrects Mitochondrial Dysfunction in Premature Aging Mouse Model

By LabMedica International staff writers
Posted on 12 Jul 2015
Print article
Image: In young but rapidly aging mice, high-fat diet feeding (right) ramps up heat production and metabolic activity relative to cooler mice fed a normal chow diet (left) (Photo courtesy of the Salk Institute).
Image: In young but rapidly aging mice, high-fat diet feeding (right) ramps up heat production and metabolic activity relative to cooler mice fed a normal chow diet (left) (Photo courtesy of the Salk Institute).
Metabolic disease researchers used a progeroid syndrome mouse model that exhibited symptoms of mitochondrial dysfunction to demonstrate the link between mitochondrial stress and the hormone FGF21 (fibroblast growth factor 21).

Progeroid means "resembling premature aging", and the progeroid POLG (polymerase gamma mtDNA mutator) mouse model was used by investigators at the Salk Institute (La Jolla, CA, USA) to study mitochondrial disease and premature aging.

These mice exhibited signs of metabolic imbalance including thermogenic defects in brown adipose tissue (BAT). A side effect of this adaptive response was the complete resistance to diet-induced obesity displayed by POLG mice when they were placed on a high-fat diet (HFD). Surprisingly, HFD further increased oxygen consumption in part by inducing thermogenesis and mitochondrial biogenesis in BAT along with enhanced expression of fibroblast growth factor 21 (FGF21).

FGF21 is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities and are involved in a variety of biological processes including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth, and invasion. Treatment of animals with FGF21 resulted in increased energy expenditure, fat utilization, and lipid excretion.

The investigators reported in the June 29, 2015, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that the metabolic benefits induced by mild mitochondrial stress via FGF21 induction in POLG mice fed a high-fat diet enabled those mice to resist diet-induced obesity and its underlying associated disease states. In addition, nutrients from a HFD appeared to reverse metabolic imbalance in these mice. HFD also robustly increased fat metabolism and improved mitochondrial function in brown fat, which mediated adaptive thermogenesis.

"These findings help us understand the link between diet, health, and aging, and they give us the potential to dissect these connections in a molecular way that could lead to therapeutics," said senior author Dr. Ronald Evans, director of the gene expression laboratory at the Salk Institute. "What we believe now is that turning on FGF21 is an adaptation to help this animal maintain its metabolic health. If the mice did not have this hormonal "fountain of youth," they might age even more quickly than they already do."

Related Links:

Salk Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.