We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Novel Controlled-Release Drug Delivery System Heals Spinal Inflammation in Mouse Model

By LabMedica International staff writers
Posted on 06 Jul 2015
Print article
Image: Scanning electron microscope (SEM) image of a field of polypyrrole nanowires (Photo courtesy of Dr. Richard Borgens, Purdue University).
Image: Scanning electron microscope (SEM) image of a field of polypyrrole nanowires (Photo courtesy of Dr. Richard Borgens, Purdue University).
A novel drug delivery system that allows controllable release of an anti-inflammatory agent directly to the site of inflammation or injury was tested successfully in a mouse model.

Investigators at Purdue University (West Lafayette, IN, USA) developed an implantable device comprising polypyrrole nanowires (PpyNWs) loaded with the anti-inflammatory corticosteroid dexamethasone. Polypyrrole is an inert and biocompatible conductive polymer material that responds to an electromagnetic field by releasing the bound drug.

The investigators lifted a one to two square millimeters patch of dexamethasone-doped PpyNWs onto a single drop of sterile water held by surface tension. The drop was deposited onto a spinal cord lesion in a transgenic mouse that produced a luminescent form of glial fibrillary acidic protein (GFAP). This protein is expressed in astrocytes that gather in high numbers at the site of central nervous system injuries where they take part in the inflammatory process and form scar tissue. In this study, the strength of the GFAP luminescent signal was a marker for degree of inflammation.

The corticosteroid dexamethasone, a powerful ameliorator of inflammation, was released from the PpyNWs by external application of an electromagnetic field for two hours per day for a week.

Results published in the May 12, 2015, online edition of the Journal of Controlled Release revealed that the GFAP signal, measured by bioluminescent imaging in the living animal, was significantly reduced in treated animals. At the end of one week, GFAP was at the edge of detection, and in some experimental animals, completely eradicated. Control animals that did not receive a patch or received a patch that did not contain dexamethasone showed no decrease in GFAP signaling.

"This method allows a very, very small dose of a drug to effectively serve as a big dose right where you need it," said senior author Dr. Richard Borgens, professor of applied neuroscience at Purdue University. "By the time the drug diffuses from the site out into the rest of the body, it is in amounts that are undetectable in the usual tests to monitor the concentration of drugs in the bloodstream."

"This tool allows us to apply drugs as needed directly to the site of injury, which could have broad medical applications," said Dr. Borgens. "The technology is in the early stages of testing, but it is our hope that this could one day be used to deliver drugs directly to spinal cord injuries, ulcerations, deep bone injuries or tumors, and avoid the terrible side effects of systemic treatment with steroids or chemotherapy."

Related Links:

Purdue University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.