We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

By LabMedica International staff writers
Posted on 25 Feb 2015
Print article
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).
A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which encodes the fusion protein mitofusin 2.

Despite the established role of mitofusins (Mfn1 and Mfn2) in mitochondrial fusion, only Mfn2 had been associated with metabolic and neurodegenerative diseases, which suggests that this protein is needed to maintain mitochondrial energy metabolism. Mice lacking the MFN1 gene, which encodes mitofusin 1, seem perfectly healthy, but MFN2-deficient mice die soon after birth. Furthermore, mutations in the MFN2 gene cause human diseases, including the peripheral neuropathy Charcot-Marie-Tooth type 2A. The molecular basis for the mitochondrial dysfunction encountered in the absence of Mfn2 has not been explained.

In the current study, investigators at the Max Planck Institute for Biology of Ageing (Cologne, Germany) worked with cultures of mouse heart muscle cells lacking the MFN2 gene.

They reported in the February 16, 2015, online edition of the Journal of Cell Biology that energy metabolism in the cells was impaired compared to that of healthy heart cells or of heart cells that lacked only Mfn1. The energy metabolic process in the Mfn2-deficient cells was found to have been disrupted by reduced levels of coenzyme Q, a key component of the mitochondrial respiratory chain that generates cellular energy in the form of ATP.

The reduced respiratory chain function in the mitochondria of cells lacking Mfn2 could be partially restored by supplementation with coenzyme Q10, which suggested a possible therapeutic strategy for patients with diseases caused by mutations in the MFN2 gene.

Related Links:

Max Planck Institute for Biology of Ageing


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.