We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Circadian Rhythms Strongly Influence Key Metabolic Pathways

By LabMedica International staff writers
Posted on 17 May 2012
Print article
By analyzing hundreds of metabolic products, researchers have discovered that circadian rhythms greatly control the production of such key building blocks as amino acids, carbohydrates, and lipids. The findings also led to the world’s first comprehensive liver metabolite map.

Of the more than 600 liver-originated metabolites identified in the study, approximately 60% were found to be dependent on the endogenous circadian clock--many more than expected, as only about 15 % of the body’s known genes have been shown to be regulated by it.

This 24-hour biologic clock governs fundamental cellular processes and adapts certain bodily functions to the appropriate time of day. Disruption of these cycles can seriously affect human health. Dr. Paolo Sassone-Corsi, lead author of the study and director of the Center for Epigenetics & Metabolism at the University of California, Irvine (UCI; USA), reported that this investigation liver metabolites revealed how the clock--through the main circadian gene, CLOCK--orchestrates the interplay between metabolites and signaling proteins.

Since external cues, such as day-night lighting patterns and nutrition, influence the circadian machinery, metabolites and their relationship to signaling proteins seem to be acutely tied to circadian disruption and may be associated with primary factors underlying metabolic-based diseases like diabetes. “This interplay has far-reaching implications for human illness and aging, and it is likely vital for proper metabolism,” said Dr. Sassone-Corsi.

Working with scientists from Metabolon, Inc. (Durham, NC, USA; www.metabolon.com), Sassone-Corsi and Kristin Eckel-Mahan, a UCI postdoctoral researcher and study coauthor, created the first liver metabolome--a dataset of liver metabolites. With this information, they also partnered with Dr. Pierre Baldi, director of UCI’s Institute for Genomics & Bioinformatics, and his graduate student Vishal Patel to analyze the data and build CircadiOmics, a Web-based data system that provides detailed profiles of metabolites and related genes, and the underlying networks through which they interact. “Within CircadiOmics, we were able to integrate this circadian metabolite data with multiple other data sources to generate the first comprehensive map of the liver metabolome and its circadian oscillations, and to develop regulatory hypotheses that have been confirmed in the laboratory,” said Dr. Baldi.

The integrated map illustrates how the circadian metabolome, transcriptome, and proteome are connected through specific nodes that operate in concert to achieve metabolic homeostasis. “CircadiOmics is being expanded with metabolic data about other tissues and conditions, and will be invaluable to further our understanding of the interplay between metabolism and circadian rhythms in healthy and diseased states,” Dr. Baldi added.

The study appeared in the March, 2012, early online edition of the Proceedings of the [U.S.] National Academy of Sciences USA.

Related Links:

University of California at Irvine

Metabolon




Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.