We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Nanoparticle-Based System Developed for Delivery of CRISPR/Cas9

By LabMedica International staff writers
Posted on 30 Nov 2017
Print article
Image: Investigators have developed nanoparticles that can transport the CRISPR genome-editing system in vivo and specifically modify genes, eliminating the need to use viruses for delivery (Photo courtesy of Massachusetts Institute of Technology).
Image: Investigators have developed nanoparticles that can transport the CRISPR genome-editing system in vivo and specifically modify genes, eliminating the need to use viruses for delivery (Photo courtesy of Massachusetts Institute of Technology).
A novel nanoparticle transport system was used to deliver the CRISPR/Cas9 genome editing tool into liver cells of living mice, which caused silencing of a specific enzyme and significant lowering of cholesterol levels.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand. Efficient genome editing with Cas9-sgRNA in vivo has required the use of viral delivery systems, which have limitations for clinical applications.

To bypass the need for a viral carrier, investigators at the Massachusetts Institute of Technology (Cambridge, USA) identified regions of sgRNA that could be modified while maintaining or enhancing genome-editing activity. They then developed an optimal set of chemical modifications for in vivo applications.

The investigators reported in the November 13, 2017, online edition of the journal Nature Biotechnology that by using lipid nanoparticle formulations of these enhanced sgRNAs and mRNA encoding Cas9, they were able to show that a single intravenous injection of this mixture into mice induced specific editing of the enzyme Pcsk9 (Proprotein convertase subtilisin/kexin type 9) in the livers of more than 80% of the treated animals. Serum Pcsk9 was reduced to undetectable levels, and cholesterol levels were significantly lowered by about 35 to 40% in these animals.

"What is really exciting here is that we have shown you can make a nanoparticle that can be used to permanently and specifically edit the DNA in the liver of an adult animal," said senior author Dr. Daniel Anderson, associate professor of chemical engineering at the Massachusetts Institute of Technology.

Related Links:
Massachusetts Institute of Technology

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
TRAb Immunoassay
Chorus TRAb

Print article

Channels

Clinical Chemistry

view channel
Image: A one-step confirmatory laboratory test could definitively diagnose active syphilis infection within 10 minutes (Photo courtesy of Adobe Stock)

First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes

In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.