We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Biosensing Platform Combined with Machine Learning to Enable Minimally-Invasive Detection of Alzheimer's

By LabMedica International staff writers
Posted on 28 Oct 2022

Alzheimer's disease is a severe neurodegenerative disorder characterized by progressive memory, cognitive impairment and personality changes, which can further evolve to dementia and death. More...

Early detection allows doctors to give timely treatments and interventions for the patient. Currently, doctors rely on several biomarkers - substances in an organism that can indicate the existence of a disease or condition - to detect Alzheimer's disease. However, collecting data that inform about these biomarkers is expensive and can be time-consuming. Now, a machine learning system being developed could provide a minimally invasive approach for detecting Alzheimer's disease as early as possible.

A team of researchers led by Penn State (University Park, PA, USA) has received a USD 1.2 million grant from the National Institutes of Health (NIH, Bethesda, MD, USA) to help fund a project to develop a machine learning system for early Alzheimer’s disease detection. The research team plans to design a system that utilizes a variety of biosensors, including optical, mechanical and electrochemical nano-sensors, that can analyze biological samples. According to the researchers, biosensing data matches well with the capabilities of machine learning techniques and the combination of the two technologies could even pave the way to new discoveries for other conditions and disease. Currently, the team is analyzing animal biological samples, but, if these initial inquiries prove successful, the researchers will move on to study human biological samples.

“By integrating a multimodal biosensing platform and a machine learning framework, we expect the system to improve early detection of Alzheimer's disease and enhance AD detection accuracy,” said Fenglong Ma, assistant professor of information sciences and technology and Institute for Computational and Data Sciences co-hire. “The biosensing platform will generate different types of sensing data, and machine learning aims to analyze these data to predict Alzheimer’s in the early stage. Since the sensing data are so diverse - or heterogeneous - advanced machine learning techniques can help model such data. Also, machine learning may help us identify some new AD biomarkers.”

“Given different types of sensing data, for instance, data acquired from different biochemical markers in human body fluids, machine learning can perform feature selection and establish associations between an individual biomarker and Alzheimer's disease, or between a set of biomarkers and the disease,” said Sharon Huang, professor of information sciences and technology and Huck Institutes of the Life Sciences co-hire. “We hope our project can result in a minimally-invasive technique that can detect Alzheimer's disease in its early stages. The technique also has the potential to be high throughput, making it possible to be used in screening for the disease. We will also try our best to make the technique accurate, reducing false positives and false negatives in AD detection.”

Related Links:
Penn State
NIH


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Serological Pipet Controller
PIPETBOY GENIUS
New
Hemoglobin Stool Test
CerTest FOB 50 + 200 One Step Combo Card Test
New
Biochemistry Analyzer
Chemi+ 8100
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.