We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biosensing Platform Combined with Machine Learning to Enable Minimally-Invasive Detection of Alzheimer's

By LabMedica International staff writers
Posted on 28 Oct 2022
Print article
Image: Researchers are exploring the use of ML for a minimally invasive system to detect Alzheimer\'s disease (Photo courtesy of NIH)
Image: Researchers are exploring the use of ML for a minimally invasive system to detect Alzheimer\'s disease (Photo courtesy of NIH)

Alzheimer's disease is a severe neurodegenerative disorder characterized by progressive memory, cognitive impairment and personality changes, which can further evolve to dementia and death. Early detection allows doctors to give timely treatments and interventions for the patient. Currently, doctors rely on several biomarkers - substances in an organism that can indicate the existence of a disease or condition - to detect Alzheimer's disease. However, collecting data that inform about these biomarkers is expensive and can be time-consuming. Now, a machine learning system being developed could provide a minimally invasive approach for detecting Alzheimer's disease as early as possible.

A team of researchers led by Penn State (University Park, PA, USA) has received a USD 1.2 million grant from the National Institutes of Health (NIH, Bethesda, MD, USA) to help fund a project to develop a machine learning system for early Alzheimer’s disease detection. The research team plans to design a system that utilizes a variety of biosensors, including optical, mechanical and electrochemical nano-sensors, that can analyze biological samples. According to the researchers, biosensing data matches well with the capabilities of machine learning techniques and the combination of the two technologies could even pave the way to new discoveries for other conditions and disease. Currently, the team is analyzing animal biological samples, but, if these initial inquiries prove successful, the researchers will move on to study human biological samples.

“By integrating a multimodal biosensing platform and a machine learning framework, we expect the system to improve early detection of Alzheimer's disease and enhance AD detection accuracy,” said Fenglong Ma, assistant professor of information sciences and technology and Institute for Computational and Data Sciences co-hire. “The biosensing platform will generate different types of sensing data, and machine learning aims to analyze these data to predict Alzheimer’s in the early stage. Since the sensing data are so diverse - or heterogeneous - advanced machine learning techniques can help model such data. Also, machine learning may help us identify some new AD biomarkers.”

“Given different types of sensing data, for instance, data acquired from different biochemical markers in human body fluids, machine learning can perform feature selection and establish associations between an individual biomarker and Alzheimer's disease, or between a set of biomarkers and the disease,” said Sharon Huang, professor of information sciences and technology and Huck Institutes of the Life Sciences co-hire. “We hope our project can result in a minimally-invasive technique that can detect Alzheimer's disease in its early stages. The technique also has the potential to be high throughput, making it possible to be used in screening for the disease. We will also try our best to make the technique accurate, reducing false positives and false negatives in AD detection.”

Related Links:
Penn State
NIH

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.