We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

By LabMedica International staff writers
Posted on 23 Apr 2025

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. More...

Now, a new study uses DNA origami structures to selectively deliver fluorescent imaging agents to pancreatic cancer cells without affecting normal cells.

The research, conducted by scientists at the University of Illinois Urbana-Champaign (Champaign, IL, USA) and Purdue University (West Lafayette, IN, USA), revealed that DNA origami structures, which are engineered to carry packets of imaging dye, can selectively target human KRAS mutant cancer cells. These cells are present in approximately 95% of pancreatic cancer cases. DNA, being a long double-stranded molecule, is particularly suited for folding into nanoscale scaffolds capable of holding molecules—in this case, fluorescent dyes—at precise locations to form new, synthetic molecular structures.

In their experiments, the researchers created 3D models of pancreatic cancer using "tumoroids" and microfluidic systems that replicate the complex tumor microenvironment. These microfluidic tumor-stroma models were designed to reduce reliance on animal tissue and enhance the potential for translating these findings to human clinical applications. To test how effectively the DNA origami structures were taken up by cancerous tissues, the researchers applied the dye-packed DNA structures to the tumor models and monitored their movement using fluorescence imaging. They further tested the distribution of these DNA origami packets in a more biologically relevant environment by administering them to mice implanted with human pancreatic tumor tissue.

The team experimented with various DNA origami shapes, including tube-shaped and tile-shaped molecules. The results, published in the journal Advanced Science, showed that tube-shaped molecules measuring approximately 70 nanometers in length and 30 nanometers in diameter, as well as smaller versions about 6 nanometers in length and 30 nanometers in diameter, exhibited the highest uptake by pancreatic cancer tissue, without being absorbed by surrounding non-cancerous tissue. In contrast, larger tube-shaped molecules and all tile-shaped molecules showed less effective results. Looking ahead, the researchers plan to explore the use of DNA origami structures loaded with chemotherapy drugs for targeted delivery to cancer cells, further minimizing impact on normal cells.

“This research highlights not only the potential for more accurate cancer imaging, but also selective chemotherapy delivery, a significant advancement over current pancreatic ductal adenocarcinoma treatments,” said Bumsoo Han, a mechanical science and engineering professor at University of Illinois Urbana-Champaign. “The current process of cancerous tissue removal through surgical resection can be improved greatly by more accurate imaging of tumor margins.”


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Sample Transportation System
Tempus1800 Necto
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.