We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

By LabMedica International staff writers
Posted on 23 Apr 2025

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. More...

Now, a new study uses DNA origami structures to selectively deliver fluorescent imaging agents to pancreatic cancer cells without affecting normal cells.

The research, conducted by scientists at the University of Illinois Urbana-Champaign (Champaign, IL, USA) and Purdue University (West Lafayette, IN, USA), revealed that DNA origami structures, which are engineered to carry packets of imaging dye, can selectively target human KRAS mutant cancer cells. These cells are present in approximately 95% of pancreatic cancer cases. DNA, being a long double-stranded molecule, is particularly suited for folding into nanoscale scaffolds capable of holding molecules—in this case, fluorescent dyes—at precise locations to form new, synthetic molecular structures.

In their experiments, the researchers created 3D models of pancreatic cancer using "tumoroids" and microfluidic systems that replicate the complex tumor microenvironment. These microfluidic tumor-stroma models were designed to reduce reliance on animal tissue and enhance the potential for translating these findings to human clinical applications. To test how effectively the DNA origami structures were taken up by cancerous tissues, the researchers applied the dye-packed DNA structures to the tumor models and monitored their movement using fluorescence imaging. They further tested the distribution of these DNA origami packets in a more biologically relevant environment by administering them to mice implanted with human pancreatic tumor tissue.

The team experimented with various DNA origami shapes, including tube-shaped and tile-shaped molecules. The results, published in the journal Advanced Science, showed that tube-shaped molecules measuring approximately 70 nanometers in length and 30 nanometers in diameter, as well as smaller versions about 6 nanometers in length and 30 nanometers in diameter, exhibited the highest uptake by pancreatic cancer tissue, without being absorbed by surrounding non-cancerous tissue. In contrast, larger tube-shaped molecules and all tile-shaped molecules showed less effective results. Looking ahead, the researchers plan to explore the use of DNA origami structures loaded with chemotherapy drugs for targeted delivery to cancer cells, further minimizing impact on normal cells.

“This research highlights not only the potential for more accurate cancer imaging, but also selective chemotherapy delivery, a significant advancement over current pancreatic ductal adenocarcinoma treatments,” said Bumsoo Han, a mechanical science and engineering professor at University of Illinois Urbana-Champaign. “The current process of cancerous tissue removal through surgical resection can be improved greatly by more accurate imaging of tumor margins.”


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Portable Electronic Pipette
Mini 96
New
Clinical Chemistry System
P780
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.