We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Raman Microscopy Technique Achieves High-Resolution Images of Biological Samples

By LabMedica International staff writers
Posted on 31 Dec 2024
Print article
Image: Raman image of rapidly frozen HeLa cells with high signal-to-noise ratio and large field-of-view (Photo courtesy of Sci. Adv. 10, eadn0110 2024)
Image: Raman image of rapidly frozen HeLa cells with high signal-to-noise ratio and large field-of-view (Photo courtesy of Sci. Adv. 10, eadn0110 2024)

Understanding the behavior of the molecules and cells that make up our bodies is essential for advancing medical science. This has driven ongoing efforts to obtain clear images of biological processes beyond what the human eye can observe. Raman microscopy is an effective imaging technique for biological samples, as it can provide chemical insights into specific molecules, such as proteins, involved in bodily functions. However, the Raman light emitted by biological samples is weak, often leading to the signal being drowned out by background noise, which results in low-quality images. Researchers have employed cryogenic freezing in a new study to enhance the resolution of Raman microscopy images of biological samples.

The study published in Science Advances by researchers at Osaka University (Osaka, Japan) presents a method for achieving high-resolution Raman microscopy images. The team developed a microscope capable of maintaining the temperature of samples that had been frozen before imaging. This technique allowed the researchers to produce images that are up to eight times brighter than those previously obtained with Raman microscopy. Importantly, this method does not require staining or chemicals to fix the cells, enabling a more authentic view of cellular processes and behavior.

Furthermore, the researchers confirmed that the freezing process preserved the physicochemical states of various proteins, providing a key advantage over traditional chemical fixation methods. The new cryofixing technique can be integrated with other microscopy approaches, allowing for more detailed analysis of biological samples. It holds significant potential for a broad range of applications in the biological sciences, including medicine and pharmaceuticals.

"One of the main reasons for blurry images is the motion of the things you’re trying to look at," said Kenta Mizushima, lead author of the study. "By imaging frozen samples that were unable to move, we could use longer exposure times without damaging the samples. This led to high signals compared with the background, high resolution, and larger fields of view."

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
New
STI Test
cobas TV/MG
New
Electroporation System
Gibco CTS Xenon

Print article

Channels

Microbiology

view channel
Image: The breakthrough system offers a faster way to diagnose bloodborne infections (Photo courtesy of Melio)

Culture-Free Platform Rapidly Identifies Blood Stream Infections

Neonatal sepsis is a life-threatening condition that results from bloodstream infections in newborns under 28 days old. Due to their immature immune systems, newborns are especially vulnerable to infections.... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.