We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

By LabMedica International staff writers
Posted on 15 Nov 2024
Print article
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology patients.

In a new study, scientists at the Institute of Science of Data and Artificial Intelligence (DATAI) at the University of Navarra (Pamplona, Spain) analyzed data from over 3,000 patients diagnosed with lung and bladder cancers. By employing machine learning models, the researchers discovered new genetic signatures unique to each stage of these cancers and created a system known as the "IFIT index" (Index of "Physical Immunity"). This system is aimed at personalizing therapies to enhance their effectiveness. The IFIT index measures a patient's immunological fitness, categorizing them based on their risk at various stages of the disease. This approach allows for predicting how well a patient will respond to treatment depending on the activity of their immune system in different stages of cancer treatment.

The research, published in the Journal for ImmunoTherapy of Cancer, is based on an analysis of the cancer immunity cycle (CIC), which looks at how immune system signals affect the success of immunotherapy. Using this framework and AI tools, the researchers identified specific patterns of cellular activity linked to the molecular stages of the disease and developed the IFIT index. This innovation highlights the potential of AI in advancing personalized medicine and offers new prospects in the fight against cancer. The team also indicated that this technique will continue to be refined through future collaborative studies involving other cancer types.

"Immunotherapy represents one of the most promising frontiers in the fight against cancer, and by using artificial intelligence models, we can further fine-tune treatments based on each patient's immune profile," said Rubén Armañanzas, leader of DATAI's laboratory Digital Medicine and one of the lead authors of the study.

 

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.