We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Noninvasive Technology Detects Rare Cancer Cells in Blood

By LabMedica International staff writers
Posted on 10 Jun 2024

Historically, analyzing circulating tumor cells (CTCs) required invasive methods like blood draws, which often missed rare CTCs or multicellular CTC clusters (CTCCs) known for their high metastatic potential. More...

Now, a groundbreaking technology offers a new way for researchers to monitor and understand the spread of cancer within the body.

A collaborative effort between researchers at Northeastern University (Boston, MA, USA) and Dartmouth College (Hanover, NH, USA) has led to the development of an innovative device known as "diffuse in vivo flow cytometry" (DiFC). This technology facilitates the noninvasive detection and counting of rare cancer cells circulating in the bloodstream. By utilizing highly scattered light to probe large blood vessels, DiFC overcomes the shortcomings of traditional tests to enable the noninvasive analysis of larger peripheral blood volumes and detection of rare cancer cells. The team’s pioneering two-color DiFC system can simultaneously identify two distinct populations of cancer cell in real time within small animals, paving the way for deeper insights into cancer evolution and treatment responses by studying various cancer cell subpopulations in the same subject.

The versatility of this two-color DiFC system was demonstrated through experiments on tissue-mimicking flow phantoms and mice afflicted with multiple myeloma. By effectively distinguishing cancer cells marked by green fluorescent protein (GFP) and tdTomato, it was possible to observe the dynamics of cancer spread in real time. Notably, most detected CTCCs exhibited single fluorescent proteins, shedding light on the heterogeneity of cancer cell populations. The implications of this technology are significant as it offers the potential to simultaneously track various subpopulations of cancer cells, providing critical insights into tumor growth and therapeutic responses. This paves the way for more refined and individualized treatment options, moving closer to effectively managing cancer. While the battle against cancer is complex, advancements like DiFC provide the tools essential for meeting this challenge. As this technology evolves, it promises to lead to more effective cancer therapies and a future where cancer may no longer be a life-threatening condition. 

Related Links:
Northeastern University
Dartmouth College


New
Gold Member
Latex Test
SLE-Latex Test
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Host Response Immunoassay Test
MeMed BV
New
cDNA Synthesis Kit
Ultimate cDNA Synthesis Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Schematic overview of the deep learning-based circulating exosome analysis for lung cancer detection (Photo courtesy of Chuan Xu, Cheng Jiang)

Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer

Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.