We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Rapidly Analyzes Gene Activities in Medical Images to Highlight Hidden Cancers

By LabMedica International staff writers
Posted on 03 Jan 2024
Print article
Image: A new AI tool brings precision pathology for cancer and beyond into quicker, sharper focus (Photo courtesy of 123RF)
Image: A new AI tool brings precision pathology for cancer and beyond into quicker, sharper focus (Photo courtesy of 123RF)

A novel artificial intelligence (AI) tool, designed to interpret medical images with exceptional clarity, is set to revolutionize the way clinicians approach disease diagnosis and image analysis.

This advanced tool, named iStar (Inferring Super-Resolution Tissue Architecture), was developed by researchers at the Perelman School of Medicine at the University of Pennsylvania (Philadelphia, PA, USA). It can assist healthcare professionals in diagnosing and treating cancers that might otherwise remain undetected. iStar offers an in-depth view of individual cells and a broader look at the full range of human gene activity, potentially revealing cancer cells that were nearly invisible earlier. This tool could play a crucial role in confirming whether cancer surgeries have fully removed malignancies and provide automatic annotations for microscopic images, marking a significant leap toward molecular-level disease diagnosis. One of the standout capabilities of iStar is its automatic identification of crucial anti-tumor immune formations known as "tertiary lymphoid structures," which are indicators of a patient's survival prospects and their likely response to immunotherapy. This precision makes iStar a powerful tool for selecting the right patients for immunotherapy treatments.

The researchers put iStar to the test across various cancer types, including breast, prostate, kidney, and colorectal cancers, alongside healthy tissue samples. In these trials, iStar automatically detected tumor and cancer cells that were challenging to spot with the naked eye. With iStar as an additional support layer, clinicians might soon be able to diagnose more elusive cancers effectively. Moreover, iStar operates at a remarkably fast pace compared to similar AI tools. In a trial with a breast cancer dataset, iStar completed its analysis in a mere nine minutes, whereas the closest competing AI tool took over 32 hours to deliver a comparable analysis. This makes iStar an astounding 213 times faster, offering a significant advantage in time-sensitive clinical environments.

“The power of iStar stems from its advanced techniques, which mirror, in reverse, how a pathologist would study a tissue sample,” explained Mingyao Li, Ph.D., a professor of Biostatistics and Digital Pathology. “Just as a pathologist identifies broader regions and then zooms in on detailed cellular structures, iStar can capture the overarching tissue structures and also focus on the minutiae in a tissue image.”

Related Links:
Perelman School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Molecular Diagnostics

view channel
Image: Prostate cancer cell image taken using a scanning electron microscope (Photo courtesy of LRI EM Unit)

New Discoveries of Prostate Cancer Evolution Pave Way for Genetic Test

Prostate cancer ranks as one of the most common cancers affecting men, and while it accounts for a significant number of male cancer fatalities, many men live with it rather than die from it.... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Industry

view channel
Image: The companies will develop genetic testing systems based on capillary electrophoresis sequencers (Photo courtesy of 123RF)

Sysmex and Hitachi Collaborate on Development of New Genetic Testing Systems

Sysmex Corporation (Kobe, Japan) and Hitachi High-Tech Corporation (Tokyo, Japan) have entered into a collaboration for the development of genetic testing systems using capillary electrophoresis sequencers... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.