We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Powerful Imaging Technology for Examining Kidneys of Lupus Patients Could Eliminate Renal Biopsies

By LabMedica International staff writers
Posted on 18 Aug 2023

Lupus (systemic lupus erythematosus) is a serious autoimmune disease that has the potential to affect various organs and even result in death. More...

A particularly severe complication of lupus is lupus nephritis (LN), which is a severe inflammation of the kidneys. This condition can be fatal, as it is a leading cause of death among lupus patients. Between 5% and 20% of the 60% of SLE patients who develop renal symptoms will progress to end-stage kidney disease within a decade. The current standard method for diagnosing LN is through a renal biopsy, a painful procedure involving the extraction and examination of kidney tissues. Unfortunately, this method has significant drawbacks, including low agreement among pathologists in determining classes and pathology indices. This inconsistency can result in misclassification of LN, leading to incorrect treatment and poor patient outcomes. Furthermore, renal biopsies only yield limited tissue samples, restricting the type and scope of analysis performed on a sample.

A promising breakthrough has emerged from researchers at the University of Houston (Houston, TX, USA), who have pioneered the use of imaging mass cytometry (IMC) to study the kidneys of SLE patients and diagnose LN. IMC offers substantial advantages over traditional methods, providing a much more comprehensive analysis of the affected tissue. Unlike conventional approaches that examine only 1-3 distinct proteins within a specific tissue, IMC can detect the presence of up to 37 different proteins simultaneously. The use of IMC is often combined with machine learning algorithms to characterize the cellular composition of the human kidney, differentiate cell types, and identify novel markers for disease.

One of the major benefits of IMC is its ability to precisely pinpoint locations of tissues for more detailed investigation. During a study involving 21 patients, researchers utilizing IMC discovered both increased and decreased disease markers indicative of renal disease. Additionally, they found that glomeruli (an intricate network of blood vessels serving as the kidneys' cleaning system) might be enlarged in some LN patients.

“Decreased expression of epithelial markers along with an increased expression of mesenchymal markers, also termed epithelial to mesenchymal plasticity (EMP) have been reported in kidney biopsies from patients with renal diseases, including LN,” said Chandra Mohan, Hugh Roy and Lillie Cranz Cullen Endowed Professor of biomedical engineering. “It is very likely that the parietal epithelial cells encircling the glomeruli may be an additional site of EMP in proliferative LN, though this needs to be verified using additional markers. EMP could certainly affect additional cells in LN kidneys, but this needs to be systematically investigated.”

Related Links:
University of Houston 


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
New
Laboratory Software
ArtelWare
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.