We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Model Accurately Shows Presence and Location of Cancer in Pathological Images

By LabMedica International staff writers
Posted on 15 Aug 2022
Print article
Image: AI model reduces cost and time and increasing accuracy of cancer diagnosis (Photo courtesy of Pexels)
Image: AI model reduces cost and time and increasing accuracy of cancer diagnosis (Photo courtesy of Pexels)

It is usually necessary to accurately mark the location of the cancer site in pathological images to solve the problems involved with zoning that indicates the location information of cancer, which takes a long time and therefore increased cost. Existing deep learning models need to construct a dataset, in which the location of the cancer was accurately drawn, to specify the cancer site. Now, researchers have developed a weakly supervised deep learning model that can accurately show the presence and location of cancer in pathological images based only on data where the cancer is present. The deep learning model improves efficiency and is expected to make a significant contribution to the relevant research field.

Scientists at Daegu Gyeongbuk Institute of Science and Technology (DGIST, Daegu, Korea) developed the weakly supervised learning model that zones cancer sites with only rough data such as 'whether the cancer in the image is present or not' is under active study. However, there would be a significant deterioration in performance if the existing weakly supervised learning model is applied to a huge pathological image dataset where the size of one image is as large as a few gigabytes. To solve this problem, the researchers attempted to improve performance by dividing the pathological image into patches, although the divided patches lose the correlation between the location information and each split data, which means that there is a limit to using all of the available information.

In response, the research team discovered a technique of segmenting down to the cancer site solely based on the learned data indicating the presence of cancer by slide. The team developed a pathological image compression technology that first teaches the network to effectively extract significant features from the patches through unsupervised contrastive learning and uses this to detect the main features while maintaining each location information to reduce the size of the image while maintaining the correlation between the patches. Later, the team developed a model that can find the regions that are highly likely to have cancer from the compressed pathology images by using a class activation map and zone all of these regions from the entire pathology images using a pixel correlation module (PCM). The newly developed deep learning model showed a dice similarity coefficient (DSC) score of up to 81-84 only with the learning data with slide-level cancer labels in the cancer zoning problem. It significantly exceeded the performance of previously proposed patch level methods or other weakly supervised learning techniques (DSC score: 20 - 70).

“The model developed through this study has greatly improved the performance of weakly supervised learning of pathological images, and it is expected to contribute to improving the efficiency of various studies requiring pathological image analysis,” said Professor Park Sang-Hyun of the Department of Robotics and Mechatronics Engineering at DGIST. “If we can improve the related technology further in the future, it will be possible to use it universally for various medical image zoning issues.”

Related Links:
DGIST 

Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
New
Dengue IgG Test
Chorus Dengue IgG
New
3-in-1 Mixer
MixMate
New
H. pylori Test
H. pylori Antigen Rapid Test Kit

Print article

Channels

Clinical Chem.

view channel
Image: Brief schematic diagram of the detection principle and method (Photo courtesy of CAS)

Rapid, Non-Invasive Method Diagnoses Type 2 Diabetes by Sniffing Urinary Acetone

Over 90% of diabetes cases are attributed to Type 2 diabetes (T2D), a prevalent metabolic condition that is expected to impact 380 million individuals globally by 2025. Despite being highly accurate, the... Read more

Molecular Diagnostics

view channel
Image: Researchers have identified the origin of subset of autoantibodies that worsen lupus (Photo courtesy of Pexels)

Lupus Biomarker Testing Could Help Identify Patients That Need Early and Aggressive Treatment

Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs when the body's antibodies, which usually protect against infections, attack healthy cells and proteins. These autoantibodies can... Read more

Immunology

view channel
Image: A genetic test could guide the use of cancer chemotherapy (Photo courtesy of Pexels)

Genetic Test Predicts Whether Bowel Cancer Patients Can Benefit From Chemotherapy

Late-stage bowel cancer patients usually undergo a series of chemotherapies and targeted medicines for cancer treatment. However, the responses to the last-line chemotherapy treatment trifluridine/tipiracil... Read more

Microbiology

view channel
Image: Use of DBS samples can break barriers in hepatitis C diagnosis and treatment for populations at risk (Photo courtesy of Pexels)

DBS-Based Assay Effective in Hepatitis C Diagnosis and Treatment for At Risk Populations

In a bid to eliminate viral hepatitis as a public health threat by 2030, the World Health Organization (WHO) has put forth a proposed strategy. To this end, researchers at the Germans Trias i Pujol Research... Read more

Technology

view channel
Image: Live view of non-fluorescent specimens using the glowscope frame (Photo courtesy of Winona State University)

Device Converts Smartphone into Fluorescence Microscope for Just USD 50

Fluorescence microscopes are utilized to examine specimens labeled with fluorescent stains or expressing fluorescent proteins, like those tagged with green fluorescent protein. However, since these microscopes... Read more

Industry

view channel
Image: The global antimicrobial resistance diagnostics market size is expected to reach USD 5.7 billion by 2028 (Photo courtesy of Pexels)

Global Antimicrobial Resistance Diagnostics Market Driven by Increasing Hospital-Acquired Infections

Antimicrobial drugs are intended to counteract the harmful effects of microbes and promote a healthy life. However, their excessive use can result in the development of resistance, commonly referred to... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.