We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics- Hematology Division


Certest Biotec, S.L. develops and manufactures IVD products in the human clinical testing field, including rapid test... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
27 Oct 2021 - 29 Oct 2021

Certest Offers Real-Time PCR Assays for Fast Detection of MDR Bacterial Infections

By LabMedica International staff writers
Posted on 23 Sep 2021
Print article

CerTest Biotec (Zaragoza, Spain) has joined the fight against multidrug resistant strains (MDR) bacterial infections by developing real-time PCR assays for the fast detection of genes or punctual mutations that confer resistance to antibiotics from both Gram-positive and Gram-negative pathogens.

Resistance to antibiotics is a natural phenomenon, through which bacteria are able to adapt and survive the activity of these compounds and poses a serious global threat of growing concern to human, animal, and environment health. This is due to the emergence, spread, and persistence of the “superbugs.” Multidrug bacteria exist across the animal, human, and environment triangle and there is interlinked sharing of these pathogens in this triad. The plausible causes of the AMR include excessive use of antibiotics in animals and humans, antibiotics sold over-the-counter, poor sanitation, and release of non-metabolized antibiotics or their residues into the environment through manure. These factors contribute to genetic selection pressure for the emergence of MDR bacterial infections in the community.

Initial inappropriate antimicrobial therapy of severe infections leads to an increased morbidity and mortality. Adequate therapy of severe infections caused by MDR is challenging as many of the main compounds typically used for infections caused by susceptible microorganisms are inactive. This may lead to extensive use of broad-spectrum antibiotics, which would contribute to selection of further resistance and may also expose patients to unnecessary toxicity.

Routine antibiogram techniques are based on a phenotypic study in which microbial growth is observed in the presence of different antibiotics. These techniques include broth macrodilution and microdilution (the gold standard for the antibiogram), agar dilution and strips with an antibiotic gradient. They yield results in around 17 hours. This is why alternative techniques to conventional diagnosis are required that present greater speed, sensitivity, specificity and ability to detect microorganisms, along with their antibiotic resistance mechanism. In addition, techniques are sought with the highest degree of automation possible, ease of implementation and a good cost effectiveness ratio.

CerTest has developed real-time PCR assays for the fast detection of genes or punctual mutations that confer resistance to antibiotics from both Gram-positive and Gram-negative pathogens. These products include multiplex assays for the detection of the principal carbapenem-resistance genes, Methicillin-resistant Staphylococcus aureus infections (MRSA), vancomycin-resistant enterococci (VRE), and the principal beta-lactamase genes. These four multiplex assays cover the main antibiotic resistance genes associated with MDR bacterial infections and sepsis-causing pathogens.

The advantage of these multiplex products is that they can each be used individually or as a broad-spectrum panel to evaluate a sample from a patient. They have been validated both in swab specimens and direct-from-blood. This clinical diagnostic tool allows obtaining the results without having to wait for the incubation time of a culture and has proven to be more sensitive and accurate than these traditional techniques, being able to initiate a personalized treatment, offering a structural model for efficient health care and avoiding the massive use of antibiotics.

Related Links:

CerTest Biotec

Gold Supplier
Fully Automated ELISA Workstation
EUROLabWorkstation ELISA
Cardiovascular Disease POC Analyzer
cobas h 232 POC System
6-Channel Viscoelastometry Analyzer
Gold Supplier
Multifuge X4 Pro Centrifuge Series

Print article


Molecular Diagnostics

view channel
Image: A cancer cell during cell division (Photo courtesy of [U.S.] National Institutes of Health)

New Method Promises Rapid Isolation of Biomarker-Rich Extracellular Vesicles

A new method for isolating and analyzing cancer biomarkers from extracellular vesicles present in biological fluids is based on a novel magnetic particle based liquid biopsy chip. Extracellular vesicles... Read more


view channel
Image: Colored Transmission electron micrograph of Clostridium difficile bacterium forming an endospore (lower right, red oval). Clostridium difficile produce a toxin that irritates the colon and causes diarrhea (Photo courtesy of Kari Lounatmaa, PhD)

Quantity of Toxin in Stool Correlates with C. difficile Severity

Clostridioides difficile (syn. Clostridium difficile), also known as C. difficile, or C. diff are Gram-positive species of spore-forming bacteria. Clostridioides spp. are anaerobic, motile bacteria, ubiquitous... Read more


view channel
Image: Non-Invasive Nasal Swab Test Leverages Advanced Genomic Technology to Detect Lung Cancer Risk (Photo courtesy of Veracyte, Inc.)

Non-Invasive Nasal Swab Test Leverages Advanced Genomic Technology to Detect Lung Cancer Risk

A novel, non-invasive nasal swab test could support more timely and accurate lung nodule diagnosis. Veracyte, Inc. (South San Francisco, CA, USA) has announced that new expanded clinical validation data... Read more


view channel
Image: VSE Cat. No. 84800 with optional mobile table and phenolic work surface (Photo courtesy of HEMCO Corporation)

Hemco Offers VSE Balance Enclosure for Critical Procedures Involving Powders and Liquids

HEMCO Corporation (Independence, MO, USA) is offering its Vented Safety Enclosure (VSE) in 24-, 36- and 48-inch widths to accommodate an analytical balance and other small-scale lab processes.... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.