We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Standard Pathology Tests Outperform Molecular Subtyping in Bladder Cancer

By LabMedica International staff writers
Posted on 02 Jan 2020
Print article
Image: Electron micrograph of a bladder cancer cell: clinical pathology tests outperform molecular subtyping in bladder cancer (Photo courtesy of Jim Stallard).
Image: Electron micrograph of a bladder cancer cell: clinical pathology tests outperform molecular subtyping in bladder cancer (Photo courtesy of Jim Stallard).
Evolving diagnostic approaches include compiling databanks on gene expression and mutations present in a cancer type to find patterns of gene expression that are then used to subtype tumors that "pathologically look similar" but are molecularly different.

Studies indicate that molecular subtypes in muscle invasive bladder cancer predict the clinical outcome. The idea is that molecular subtypes are better equipped to indicate which cancer is more or less aggressive and to help steer treatment options like whether chemotherapy before surgery to remove a diseased bladder is better.

A team of scientists led by those at the Medical College of Georgia (Augusta, GA, USA) subtyped institutional cohort of 52 patients, including 39 with muscle invasive bladder cancer, an Oncomine (Thermo Fisher Scientific, Waltham, MA, USA) data set of 151 with muscle invasive bladder cancer and TCGA (The Cancer Genome Atlas) data set of 402 with muscle invasive bladder cancer. Subtyping was done using simplified panels (MCG-1 and MCG-Ext) which included only transcripts common in published studies and were analyzed for predicting metastasis, and cancer specific, overall and recurrence-free survival.

The team reported that MCG-1 was only 31% -36% accurate at predicting important indicators like likelihood of metastasis; disease specific survival, meaning surviving bladder cancer; or overall survival, meaning survival from all causes of death from the time of cancer diagnosis or beginning of treatment until the study's end. They looked again at the 402 patients whose specimens were in the dataset and found that 21 patients' tumors were actually low-grade. Patients with low-grade tumors have higher survivability and a better prognosis than patients with high-grade muscle invasive disease.

When they removed the low-grade cases from the TCGA dataset, MCG-1 accurately predicted essentially nothing, not even overall survival. Then they included some patients with low-grade tumors into their own dataset, which they had looked at originally, and MCG-1 was now able to predict metastasis and disease specific survival. All the existing subtypes are categorized as bad or better based on the cancer prognosis. The presence of the low-grade tumors in the classification of subtypes skewed the data to make it look like subtypes were predicting overall survival when really it was the grade of the cancer itself that was predictive.

Vinata B. Lokeshwar, PhD, a professor and corresponding author of the study, said, “Genetic profiling of a patient's tumor definitely has value in enabling you to discover the drivers of growth and metastasis that help direct that individual's treatment, even as it helps to identify new treatment targets. But using this information to subtype tumors does not appear to add diagnostic or prognostic value for patients.”

The authors concluded that molecular subtypes reflect bladder tumor heterogeneity and are associated with tumor grade. In multiple cohorts and subtyping classifications the clinical parameters outperformed subtypes for predicting the outcome. The study was published on January 1, 2020 in the Journal of Urology.

Related Links:
Medical College of Georgia
Oncomine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.