We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Could Help Identify Early Skin Cancer

By LabMedica International staff writers
Posted on 05 Sep 2017
Newly developed technology uses artificial intelligence (AI) to help detect melanoma skin cancer earlier than current methods and to help reduce the number of unnecessary biopsies. More...
The AI-based method employs machine-learning software to analyze images of skin lesions and to provide doctors with objective data on telltale biomarkers of melanoma.

"This could be a very powerful tool for skin cancer clinical decision support," said Alexander Wong, professor at University of Waterloo (Waterloo, ON, Canada), "The more interpretable information there is, the better the decisions are." Prof. Wong developed the technology in collaboration with Daniel Cho, former PhD student at Waterloo, David Clausi, professor at Waterloo, and Farzad Khalvati, adjunct professor at Waterloo and scientist at Sunnybrook.

Currently, dermatologists largely rely on subjective visual examinations of skin lesions (e.g. moles) to decide if patients should undergo biopsies to diagnose the disease. The new system deciphers levels of biomarker substances in lesions, adding consistent, quantitative information to assessments currently based on visual appearance alone. In particular, changes in the concentration and distribution of eumelanin (gives color to skin) and hemoglobin are strong indicators of melanoma.

"There can be a huge lag-time before doctors even figure out what is going on with the patient," said Prof. Wong, "Our goal is to shorten that process." The AI system was trained using tens of thousands of skin images and their corresponding eumelanin and hemoglobin levels. It gives doctors objective information on lesion characteristics to help them identify or rule out melanoma before deciding if to take more invasive action. The technology could be available to doctors as early as 2018.

The research was recently presented at the 14th International Conference on Image Analysis and Recognition (ICIAR 2017, July 5-7, 2017, Montreal, Canada).

Related Links:
University of Waterloo


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Collection and Transport System
PurSafe Plus®
New
Gel Cards
DG Gel Cards
Silver Member
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.