We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Identification of Gene Defects Helps Prostate Cancer Treatment

By LabMedica International staff writers
Posted on 16 Nov 2016
Print article
Image: A histopathology of prostate cancer showing multiple poorly formed glands with ill-defined lumina and/or incomplete nuclear complement (Photo courtesy of European Urology).
Image: A histopathology of prostate cancer showing multiple poorly formed glands with ill-defined lumina and/or incomplete nuclear complement (Photo courtesy of European Urology).
The current method of treating prostate cancer involves identifying gene defects, which could help with the diagnosis of cancer and the development of individualized cancer treatments for patients.

The molecular biology of prostate cancer is now under scrutiny as the goal is to obtain a holistic picture of the disease’s mechanisms and use those mechanisms as a basis for developing new treatments.

Scientists at the University of Tampere (Finland) have been studying the molecular mechanisms in prostate cancer, which is the most common cancer among Finnish men and the second most common cancerous cause of death in males. The disease's underlying mechanisms vary significantly from one individual to the next and therefore, prostate cancer treatments should be designed individually for each patient according to their personal clinical picture.

Several new treatments have been developed for prostate cancer in the past ten years. The same problem remains: the inability to predict which treatment will be most effective for each patient. It has been known for some time that prostate cancer growth is stimulated by male hormones called androgens. Hormonal therapy, which prevents the production or effects of androgens, has been the so-called gold standard in treating the advanced form of the disease.

However, prostate cancer can reactivate the androgen receptor-signaling pathway during treatment. Some types of prostate cancer eventually become independent of androgens. The scientists have found a new mechanism related to the activation of the transcription cofactor Hairy and Enhancer of Split 6 (HES6) as the result of gene fusion, which leads to this type of cancer cell development. These types of prostate cancer need non-hormonal therapy.

Tapio Visakorpi, MD, PhD, a professor and lead investigator of the study, said, “Recent genome studies have shown that even though prostate cancer initiates in a single cell of origin, several cancer cell subpopulations with different genome types emerge as the disease progresses. This is not a single disease; several mechanisms lead to the emergence of the disease. Therefore, it's important to identify those genome defects in each patient that occur in all cancer cells, that is, the so-called truncal mutations, and target the treatment to them. This requires taking multiple samples from the patient. The processing of samples also needs to be improved to make them more suitable for molecular analysis than the current methods. We've developed a new processing method for cancerous tissue.”

Related Links:
University of Tampere

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.