We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI-guided Immunoassay Measures Maternal Autoantibodies to Predict Likelihood of Autism Spectrum Disorder

By LabMedica International staff writers
Posted on 02 Feb 2021
An AI-guided immunoassay that measures maternal autoantibodies accurately predicts the likelihood that a child will develop autism spectrum disorder (ASD).

Investigators at the University of California, Davis (USA) had previously identified the presence of maternal autoantibodies to fetal brain proteins specific to ASD, now termed maternal autoantibody-related (MAR) ASD. More...
In a recent paper they discussed the creation and validation of a serological assay to identify ASD-specific maternal autoantibody patterns of reactivity against eight previously identified proteins (CRMP1, CRMP2, GDA, NSE, LDHA, LDHB, STIP1, and YBOX) that are highly expressed in developing brain.

The investigators analyzed plasma from 450 mothers of children diagnosed with ASD and from 342 mothers of typically developing children to develop an ELISA test for each of the protein antigens. They then used a machine learning algorithm to determine patterns of highly significant association with ASD and discovered several patterns that were ASD-specific.

Results revealed that the three main patterns associated with MAR ASD were CRMP1 + GDA, CRMP1 + CRMP2, and NSE + STIP1. Additionally, they found that maternal autoantibody reactivity to CRMP1 significantly increased the odds of a child having a higher Autism Diagnostic Observation Schedule (ADOS) severity score.

"The implications from this study are tremendous," said senior author Dr. Judy Van de Water, professor of rheumatology, allergy, and clinical immunology at the University of California, Davis. "It is the first time that machine learning has been used to identify with 100% accuracy MAR ASD-specific patterns as potential biomarkers of ASD risk. We can envision that a woman could have a blood test for these antibodies prior to getting pregnant. If she had them, she would know she would be at very high risk of having a child with autism. If not, she has a 43% lower chance of having a child with autism, as MAR autism is ruled out."

The paper was published in the January 22, 2021, online edition of the journal Molecular Psychiatry.

Related Links:
University of California, Davis


New
Gold Member
Hybrid Pipette
SWITCH
Collection and Transport System
PurSafe Plus®
Clinical Chemistry System
P780
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.