We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Rapid Test Uses Nanopore Sequencing to Diagnose Sepsis by Detecting DNA Released by Pathogenic Microorganisms in the Bloodsteam

By LabMedica International staff writers
Posted on 17 Mar 2020
A team of German researchers has developed a rapid test to diagnosis sepsis by detecting DNA released by pathogenic microorganisms in the bloodsteam.

Current diagnostic procedures for pathogen identification mainly depend on culture- and molecular-based approaches, which may not be satisfactory regarding specificity, sensitivity, and time to diagnosis. More...
To correct this situation, investigators at the Fraunhofer Institute for Interfacial Engineering and Biotechnology (Stuttgart, Germany) and Heidelberg University Hospital (Heidelberg, Germany) developed a complete diagnostic workflow for real-time high-throughput sequencing of cell-free DNA from plasma based on nanopore sequencing for the detection of the causative agents.

Nanopore sequencing is a unique, scalable technology that enables direct, real-time analysis of long DNA or RNA fragments. It works by monitoring changes to an electrical current as nucleic acids are passed through a protein nanopore. The resulting signal is decoded to provide the specific DNA or RNA sequence. Using nanopore sequencing, a single molecule of DNA or RNA can be sequenced without the need for PCR amplification or chemical labeling of the sample. At least one of these aforementioned steps is necessary in the procedure of any previously developed sequencing approach.

For the current study, DNA detection and sequencing was carried out with the Oxford Nanopore Technologies (Oxford, United Kingdom) MinION system. Initially, eight samples from four septic patients and three healthy controls were analyzed and subsequently validated against results obtained by the Illumina (San Diego, CA, USA) next-generation sequencing technique.

The investigators then conducted a retrospective analysis of 239 samples taken from sepsis patients. Although the accuracy of nanopore sequencing was lower than with Illumina (approximately 85% vs. 99%), they found a strong correlation between the findings generated by MinION vs. Illumina.

The results suggested that reliable identification of pathogens based on circulating cell-free DNA sequencing using optimized workflows and real-time nanopore-based sequencing could be accomplished within five to six hours following blood draw.

"With up to 50 million incident sepsis cases and 11 million sepsis-related deaths per year, sepsis represents a major cause of health loss," contributing author Dr.Thorsten Brenner, vice-head of anesthesiology at Heidelberg University Hospital. "Reliable and early identification of the pathogen enables rapid and the most appropriate antibiotic intervention, thereby increasing the chance of better outcomes and patient survival. Currently, standard-of-care diagnostics still rely on microbiological culturing of the respective pathogens, which in most cases (70 to 90%) do not provide timely positive results."

"Time consuming, error- and contamination-prone blood cultures are still considered as the standard of care for sepsis diagnostics, frequently leading to an inappropriate and delayed targeted therapy," said Dr. Brenner. "The nanopore sequencing platform sequences in real time and has the potential to reduce time to diagnosis to only a few hours."

The sepsis detection paper was published in the March 2020 issue of the Journal of Molecular Diagnostics.

Related Links:
Fraunhofer Institute for Interfacial Engineering and Biotechnology
Heidelberg University Hospital
Oxford Nanopore Technologies
Illumina



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.