We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Genetic Testing for Hypercholesterolemia Improves Diagnosis

By LabMedica International staff writers
Posted on 16 Aug 2018
Print article
Image: Molecular basis of familial hypercholesterolemia with a dominant pattern of inheritance: impaired low-density lipoprotein cholesterol clearance due to variations in LDLR, APOB, PCSK9 (Photo courtesy of Mayo Clinic).
Image: Molecular basis of familial hypercholesterolemia with a dominant pattern of inheritance: impaired low-density lipoprotein cholesterol clearance due to variations in LDLR, APOB, PCSK9 (Photo courtesy of Mayo Clinic).
Familial Hypercholesterolemia (FH) is caused by a genetic defect that hinders the body's ability to remove low-density lipoprotein (LDL) cholesterol from the blood. High LDL levels in the blood are more likely to result in narrowing of the arteries, which puts patients at substantially higher lifetime risk for heart disease and stroke at an early age.

The condition occurs in around 1 out of 220 people and it is estimated that there are 30 million people with FH worldwide. However, FH is significantly underdiagnosed, largely due to the wide spectrum of phenotypes caused by a range of pathogenic variants. It is reported that more than 90% of patients worldwide and more than one million in the USA remain undiagnosed.

An expert panel led by the Geisinger Genomic Medicine Institute (Danville, PA, USA) has recommended that genetic testing should be the standard of care for patients who have a definite or probable diagnosis for FH based on clinical factors and family history. Wider use of genetic testing to identify FH patients is necessary, according to the expert panel, since cardiovascular conditions and other disease phenotypes might show up in a minority of patients, and there might be incomplete information on the prevalence of such conditions among relatives. Moreover, while patients with pathogenic FH variants generally have higher LDL-C levels, studies have shown a wide range of levels among patients.

The scientists recommended that those with very high LDL cholesterol and a positive family history of high cholesterol or early heart attack should be evaluated for pathogenic variants in at least three genes: low density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9), though doctors may assess other genes based on a patient's specific phenotype. More than 2,000 unique genetic variants associated with FH have been identified to date, with around half being classified as pathogenic or likely pathogenic. More than 90% of pathogenic variants are in LDLR, between 5% and 10% are in APOB, and less than 1% are in PCSK9. Genetic testing doesn't always detect a pathogenic variant in one of these genes, and the authors noted that FH should be diagnosed clinically in the event of a negative test result.

Daniel J Rader, MD, a Professor of Molecular Medicine and a senior co-author of the study said, “In this era of precision medicine, genetic testing is an important tool to identify people at high risk for FH and guide the management of their LDL cholesterol to reduce long-term morbidity and mortality from early and aggressive CAD. Physicians should entertain the diagnosis of FH in their patients who have a family history of early heart disease and/or high LDL cholesterol, and consider offering a genetic test in those who may have FH.” The study was published in the August 2018 issue of the Journal of the American College of Cardiology.

Related Links:
Geisinger Genomic Medicine Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.