We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genetic Testing for Hypercholesterolemia Improves Diagnosis

By LabMedica International staff writers
Posted on 16 Aug 2018
Familial Hypercholesterolemia (FH) is caused by a genetic defect that hinders the body's ability to remove low-density lipoprotein (LDL) cholesterol from the blood. More...
High LDL levels in the blood are more likely to result in narrowing of the arteries, which puts patients at substantially higher lifetime risk for heart disease and stroke at an early age.

The condition occurs in around 1 out of 220 people and it is estimated that there are 30 million people with FH worldwide. However, FH is significantly underdiagnosed, largely due to the wide spectrum of phenotypes caused by a range of pathogenic variants. It is reported that more than 90% of patients worldwide and more than one million in the USA remain undiagnosed.

An expert panel led by the Geisinger Genomic Medicine Institute (Danville, PA, USA) has recommended that genetic testing should be the standard of care for patients who have a definite or probable diagnosis for FH based on clinical factors and family history. Wider use of genetic testing to identify FH patients is necessary, according to the expert panel, since cardiovascular conditions and other disease phenotypes might show up in a minority of patients, and there might be incomplete information on the prevalence of such conditions among relatives. Moreover, while patients with pathogenic FH variants generally have higher LDL-C levels, studies have shown a wide range of levels among patients.

The scientists recommended that those with very high LDL cholesterol and a positive family history of high cholesterol or early heart attack should be evaluated for pathogenic variants in at least three genes: low density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9), though doctors may assess other genes based on a patient's specific phenotype. More than 2,000 unique genetic variants associated with FH have been identified to date, with around half being classified as pathogenic or likely pathogenic. More than 90% of pathogenic variants are in LDLR, between 5% and 10% are in APOB, and less than 1% are in PCSK9. Genetic testing doesn't always detect a pathogenic variant in one of these genes, and the authors noted that FH should be diagnosed clinically in the event of a negative test result.

Daniel J Rader, MD, a Professor of Molecular Medicine and a senior co-author of the study said, “In this era of precision medicine, genetic testing is an important tool to identify people at high risk for FH and guide the management of their LDL cholesterol to reduce long-term morbidity and mortality from early and aggressive CAD. Physicians should entertain the diagnosis of FH in their patients who have a family history of early heart disease and/or high LDL cholesterol, and consider offering a genetic test in those who may have FH.” The study was published in the August 2018 issue of the Journal of the American College of Cardiology.

Related Links:
Geisinger Genomic Medicine Institute


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Portable Electronic Pipette
Mini 96
Pipette
Accumax Smart Series
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Pathology

view channel
Image: The new system allows surgeons to identify genotyping of brain tumors and determine optimal resection margins during surgery (Photo courtesy of Nagoya University)

New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes

Determining the genetic profile of brain tumors during surgery is crucial for improving patient outcomes, but conventional analysis methods can take up to two days, delaying critical decisions.... Read more

Industry

view channel
Image: The enhanced collaboration builds upon the successful launch of the AmplideX Nanopore Carrier Plus Kit in March 2025 (Photo courtesy of Bio-Techne)

Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.