We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Multiplexed Amplification Evaluated for Viral Hemorrhagic Fever Diagnostics

By LabMedica International staff writers
Posted on 14 Dec 2017
Viral hemorrhagic fever is a severe and potentially lethal disease, characterized by fever, malaise, vomiting, mucosal and gastrointestinal bleeding, and hypotension, in which multiple organ systems are affected.

Due to modern transportation and global trade, outbreaks of viral hemorrhagic fevers have the potential to spread rapidly and affect a significant number of susceptible individuals. More...
Therefore, urgent and robust diagnostics with an identification of the causative virus is crucial.

Scientists at the Robert Koch Institute (Berlin, Germany) have developed and evaluated a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics.

The team used an ultrahigh-multiplex panel designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform.

A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. Thermo cycling was performed in an Eppendorf Mastercycler Pro. The amplicons obtained from the virus strains were subjected to the Ion Torrent Personal Genome Machine (PGM) System for NGS analysis.

The investigators used the multiplex primer panel that comprised two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours.

The authors concluded that virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs, which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring. The study was published on November 20, 2017, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:
Robert Koch Institute


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Simoa p-Tau 217 research assay measures phosphorylated tau in blood (Photo courtesy of Quanterix)

Ultra-Sensitive Blood Biomarkers Enable Population-Scale Insights into Alzheimer’s Pathology

Accurately estimating how many people carry Alzheimer’s disease pathology has long been a challenge, as traditional methods rely on small, clinic-based samples rather than the general population.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.