We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Automatic Cytometer Tallies Tumor Cells in Blood

By LabMedica International staff writers
Posted on 19 May 2015
Print article
Image: The measuring channel that forms the key component of the PoCyton cytometer is visible on the right-hand side of the image (Photo courtesy of Fraunhofer ICT-IMM).
Image: The measuring channel that forms the key component of the PoCyton cytometer is visible on the right-hand side of the image (Photo courtesy of Fraunhofer ICT-IMM).
Flow cytometry has been used to count cancer cells for many years, but the large instruments are expensive and can only be operated by trained personnel.

Existing flow cytometers are capable of measuring the quantity of tumor cells circulating in the bloodstream but they often cost up to EUR 300,000 and can take up a huge amount of space, equivalent to two washing machines.

Scientists at the Fraunhofer Institute for Chemical Technology (Munich, Germany) have developed the PoCyton cytometer which is cheap to produce, no bigger than a shoebox, and automated. All the PoCyton flow cytometer needs is a sample of the patient's blood, and within a short time the attending physician will know how many tumor cells are circulating in the blood. Cancerous growths release cells into the bloodstream, and their number provides an indication of how effective the therapy has been. If the number of cancerous cells decreases in the course of treatment, it shows that it has been effective.

Flow cytometry works on the following principle: A fluorescent dye is injected into the blood, and the dye molecules bind to the tumor cells, leaving all other cells unmarked. Whereas until now the physician had to add the dye to the blood sample manually, this now takes place automatically in the PoCyton process. The blood is funneled through a narrow focal area, causing all suspended cells to pass one by one in front of a laser spot detector. The light causes the cells to which the dye has attached itself, the tumor cells, to fluoresce, enabling the device to detect and count them. This narrow passage is the key to the PoCyton process.

Michael Bassler, PhD, a senior scientist who helped develop the cytometer, said, “We designed it in such a way that the throughput is 20 times greater than in conventional cytometry. At the same time, its geometry was chosen to ensure that no cells pass in front of one another. In this way the scientists can be sure that the system registers every single object flowing past the detector, and that no cell is hidden behind another. Such errors could have dramatic consequences, because a mere 10 mL sample of blood contains around one billion suspended objects. Of these, only five are circulating tumor cells, even in a severely sick patient.”

Related Links:

Fraunhofer Institute for Chemical Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.