We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
06 Feb 2023 - 09 Feb 2023

Automatic Cytometer Tallies Tumor Cells in Blood

By LabMedica International staff writers
Posted on 19 May 2015
Print article
Image: The measuring channel that forms the key component of the PoCyton cytometer is visible on the right-hand side of the image (Photo courtesy of Fraunhofer ICT-IMM).
Image: The measuring channel that forms the key component of the PoCyton cytometer is visible on the right-hand side of the image (Photo courtesy of Fraunhofer ICT-IMM).
Flow cytometry has been used to count cancer cells for many years, but the large instruments are expensive and can only be operated by trained personnel.

Existing flow cytometers are capable of measuring the quantity of tumor cells circulating in the bloodstream but they often cost up to EUR 300,000 and can take up a huge amount of space, equivalent to two washing machines.

Scientists at the Fraunhofer Institute for Chemical Technology (Munich, Germany) have developed the PoCyton cytometer which is cheap to produce, no bigger than a shoebox, and automated. All the PoCyton flow cytometer needs is a sample of the patient's blood, and within a short time the attending physician will know how many tumor cells are circulating in the blood. Cancerous growths release cells into the bloodstream, and their number provides an indication of how effective the therapy has been. If the number of cancerous cells decreases in the course of treatment, it shows that it has been effective.

Flow cytometry works on the following principle: A fluorescent dye is injected into the blood, and the dye molecules bind to the tumor cells, leaving all other cells unmarked. Whereas until now the physician had to add the dye to the blood sample manually, this now takes place automatically in the PoCyton process. The blood is funneled through a narrow focal area, causing all suspended cells to pass one by one in front of a laser spot detector. The light causes the cells to which the dye has attached itself, the tumor cells, to fluoresce, enabling the device to detect and count them. This narrow passage is the key to the PoCyton process.

Michael Bassler, PhD, a senior scientist who helped develop the cytometer, said, “We designed it in such a way that the throughput is 20 times greater than in conventional cytometry. At the same time, its geometry was chosen to ensure that no cells pass in front of one another. In this way the scientists can be sure that the system registers every single object flowing past the detector, and that no cell is hidden behind another. Such errors could have dramatic consequences, because a mere 10 mL sample of blood contains around one billion suspended objects. Of these, only five are circulating tumor cells, even in a severely sick patient.”

Related Links:

Fraunhofer Institute for Chemical Technology


Gold Supplier
Microplate Centrifuge & Reader
Lyra MP-Reader II
New
LED Microscope
DM2000/ DM2000 LED
New
3-Part Diff Hematology Analyzer
Aquarius 3
New
STREP A Test
Detector STREP A

Print article
MEDLAB - INFORMA

Channels

Molecular Diagnostics

view channel
Image: A novel research study moves the needle on predicting sudden cardiac arrest (Photo courtesy of Pexels)

Newly Identified Protein Biomarkers in Blood Predict Sudden Cardiac Arrest Before it Strikes

Sudden cardiac arrest, or the sudden loss of heartbeat, is a life-threatening heart condition and often fatal. Despite providing an organized emergency medical response, less than 10% of individuals having... Read more

Immunology

view channel
Image: Histopathology of Langerhans cell histiocytosis: The variation in nuclear contours of these cells is evident in this lesion. Classic `kidney bean` nuclei of Langerhans cells with a central groove are present (Photo courtesy of John Lazarchick, MD)

Cooperativity Between Myeloid Lineages Promotes Langerhans Cell Histiocytosis Pathology

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia seen in children and adults who present with lesions composed of pathologic variants of myeloid cells that share certain phenotypic... Read more

Microbiology

view channel
Image: Medical illustration of Carbapenem-resistant Enterobacteriacea (Photo courtesy of CDC, Stephanie Rossow)

Breakthrough Test Enables Targeted Antibiotic Therapy for Various Enterobacter Species

Bacteria of the Enterobacter genus are considered to be the most dangerous bacteria linked to hospital infections across the world. Some of their representatives demonstrate high resistance to commonly-used... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.