We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




African-American MS Patients Experience More Rapid B-Cell Repopulation

By LabMedica International staff writers
Posted on 06 May 2021
Print article
Image: Histology showing pathological and immunopathological findings from a spinal cord lesion from a 52-year-old woman who died from active neuromyelitis optica associated with a longitudinally extensive spinal cord lesion extending from C3 to T8 (Photo courtesy of CHU de Strasbourg)
Image: Histology showing pathological and immunopathological findings from a spinal cord lesion from a 52-year-old woman who died from active neuromyelitis optica associated with a longitudinally extensive spinal cord lesion extending from C3 to T8 (Photo courtesy of CHU de Strasbourg)
Multiple sclerosis (MS) is a potentially disabling disease of the brain and spinal cord (central nervous system). In MS, the immune system attacks the protective sheath (myelin) that covers nerve fibers and causes communication problems between the brain and the rest of the body.

Neuromyelitis optica spectrum disorder (NMOSD), also known as Devic disease, is a chronic disorder of the brain and spinal cord dominated by inflammation of the optic nerve (optic neuritis) and inflammation of the spinal cord (myelitis). Classically, it was felt to be a monophasic illness, but the interval between attacks may be weeks, months or years. In its early stages, NMOSD may be confused with multiple sclerosis (MS).

Medical Scientists from the NYU Grossman School of Medicine (New York, NY, USA) enrolled in a retrospective cross-sectional study, 168 patients, including 61 African-American patients, 60 white patients, and 47 who identified as other races; about 19% were Hispanic. About 80% of the patients were diagnosed with multiple sclerosis, and 19% had neuromyelitis optica spectrum disorder. The team also looked at the types of B cells being repopulated and found there were no differences between African-Americans and whites in the makeup of the cells.

The team reported that in the 6 to 12 months after undergoing treatment with rituximab or ocrelizumab to deplete B cells, African-Americans patients were more than twice as likely to have B cell repopulation compared with white patients (76% versus 33%). In the four to six months following treatment, however, repopulation of B cells was about the same in both groups, at roughly 21% in the African-American patients compared with 18% in the white patients. No patients had B cell repopulation within four months of treatment. At four to six months, 23% had B cell repopulation and by after 10 months, 90% had repopulation of their B cells.

Lucia Saidenberg, MD, an author of the study, said, “Anti-CD20 therapy, including rituximab and ocrelizumab, are highly effective treatments for multiple sclerosis and neuromyelitis optica spectrum disorder and are known to cause a near complete depletion of B cells in the blood soon after infusion. However, repopulation of B cells following anti-CD20 infusion has not been well studied in these patients, particularly not in African-American patients, who are underrepresented in clinical trials for these drugs and tend to have more severe disease and faster disease progression compared to white patients with multiple sclerosis.” The study was presented at the American Academy of Neurology virtual meeting held April 17-22, 2021.

Related Links:
NYU Grossman School of Medicine

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Creatine Kinase-MB Assay
CK-MB Test
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.