We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Immune Microenvironment Changes Contribute to Early-Stage Multiple Myeloma

By LabMedica International staff writers
Posted on 14 May 2020
Print article
Image: Photomicrograph of multiple myeloma in a smear preparation of a bone marrow aspirate (Photo courtesy of the Institute of Cancer).
Image: Photomicrograph of multiple myeloma in a smear preparation of a bone marrow aspirate (Photo courtesy of the Institute of Cancer).
Multiple myeloma is a cancer that forms in a type of white blood cell called a plasma cell. Plasma cells help you fight infections by making antibodies that recognize and attack germs. Multiple myeloma causes cancer cells to accumulate in the bone marrow, where they crowd out healthy blood cells.

Precursor states of multiple myeloma (MM) and its native tumor microenvironment need in-depth molecular characterization to better stratify and treat patients at risk. A new study suggests that immune microenvironment changes can contribute to early-stage multiple myeloma, appearing in precursor conditions that precede the blood cancer.

A team of scientists collaborating with the Dana-Farber Cancer Institute (Boston, MA, USA) performed cell sorting and single-cell RNA sequencing on some 19,000 cells from bone marrow samples from seven newly diagnosed multiple myeloma patients; 11 individuals with high- or low-risk "smoldering" multiple myeloma involving some altered plasma cells; and five individuals with a condition known as monoclonal gammopathy of unknown significance (MGUS) that sometimes progresses to multiple myeloma.

The team's analyses uncovered expression-based clusters representing nine types of immune cells including CD16+ or CD14+ monocytes, natural killer cells, B cells, and T cells. In the early stages of multiple myeloma, for example, the single-cell transcriptome data pointed to an uptick in natural killer cell representation in the immune microenvironment, together with chemokine receptor expression changes.

The investigators also picked up other immune changes, from a decline in certain memory cytotoxic T cells and enhanced interferon signaling by multiple immune cell types to altered regulation of monocyte immune cells with effects on T cell activity. They went on to confirm some of the immune microenvironment changes in mouse models of early multiple myeloma, in vitro cell line experiments, and phenotyping profiles for bone marrow samples from more than a dozen individuals with or without multiple myeloma or a precursor condition.

The scientists reported that major histocompatibility complex class II dysregulation in CD14+ monocytes, which results in T-cell suppression in vitro. These results provide a comprehensive map of immune changes at play over the evolution of premalignant MM, which will help develop strategies for immune-based patient stratification. The study was published on April 27, 2020 in the journal Nature Cancer.

Related Links:
Dana-Farber Cancer Institute

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Macrophages infected with mycobacterium tuberculosis (Photo courtesy of MIT)

New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests

Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.