We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Potential Screening for Tailoring Treatment of AML

By LabMedica International staff writers
Posted on 17 Dec 2018
Print article
Image: The CellTiter-Glo 3D cell viability assay (Photo courtesy of Promega).
Image: The CellTiter-Glo 3D cell viability assay (Photo courtesy of Promega).
Acute Myeloid Leukemia (AML) is a serious disorder of certain blood-forming cells. In this disease, certain early precursor cells in the bone marrow that usually develop into white blood cells do not mature properly. They remain frozen as primitive cells called blasts, unable to further differentiate and mature.

Leukemia stem cells (LSC), the progenitors for the immature cancerous blood cells, propagate AML, and also play a role in the cancer returning after treatment. Cancer scientists are interested in how genes are expressed in this cell population, because this data may hold clues to resistance to standard therapies and answers to why some patients relapse.

A multidisciplinary team of scientists at the University of Washington Health Sciences (Seattle, WA, USA) and their colleagues obtained samples from patients with AML. LSCs were isolated by fluorescence-activated cell sorting (FACS) and the blast population enriched to more than 90% using immunomagnetic beads from blood samples from five patients with AML. A sixth AML patient sample was used for NOD/SCID IL2R γc−/− engraftment, in order to compare characteristics of pre- and post-engraftment subclones.

The CLIA approved custom assay includes 153 drugs and targeted agents, both FDA approved and investigational, with additional drug combinations. High throughput screens (HTS) were conducted with enriched cells adherent to matrix protein in 384 well plates with eight concentrations of each drug spanning four logs. Viability was assessed with CellTiter-Glo. HTS were performed on LSCs, blasts and pre- as well as post-engraftment AML subclones from the xenograft. Dose-response curves were generated to calibrate drug resistance patterns. Mutation analysis by NGS for a panel of 194 recurrently mutated genes in AML including 37 translocations was also conducted for the LSC and blast populations.

The team reported that AML blasts and LSCs exhibited divergent drug susceptibility patterns. Of 11 drugs commonly used in AML, eight were typical chemotherapy drugs. Five of these compounds were effective against blasts, but none were effective against LSCs, suggesting a possible mechanism for post-treatment relapse or primary refractoriness. LSCs were also resistant to mitomycin-C, an agent that induces DNA interstrand crosslinks and DNA breaks, in contrast to blasts that were variably sensitive. Of note, they identified 12 drugs from eight classes defined by mechanism of action that may target LSCs, in some cases preferentially, when compared with blasts.

The authors concluded that the distinct drug susceptibility patterns of patient-specific LSC and blast populations highlight the potential of an individualized approach to treat AML. LSCs are resistant to S-phase agents used in standard-of-care chemotherapy. Genetically distinct minority resistant LSC subclones present at diagnosis may grow rapidly under some conditions, and contribute to drug resistance and relapse. Incorporating the results of functional drug screening focused on LSC subclones may allow more individualized treatment of AML patients and identify patient-specific therapies that lead to improved outcomes. The study was presented at the 60th Annual Meeting of the American Society of Hematology held December 1-4, 2018, in San Diego, CA, USA.

Related Links:
University of Washington Health Sciences

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Karius Focus BAL is designed to quickly identify the etiology of lung infections and improve diagnostic yield over standard of care testing (Photo courtesy of Karius)

Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections

Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.