We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Device Offers Potential for More Effective Blood Disorders Diagnostics

By LabMedica International staff writers
Posted on 23 Aug 2016
Researchers have developed a microfluidic device with fixed endothelial cells to mimic cellular and vascular flow conditions inside a patient’s body, which could help monitor blood clot formation, diagnose effectiveness of anti-platelet therapy, and prevent dysfunctional hemostasis.

When in dysfunction, the vascular endothelium (tissue that lines the blood vessels) plays a major role in the development of many diseases because endothelial cells are sensitive to blood flow and interact with blood cells through surface molecules. More...
In normal hemostasis, the endothelium prevents life-threatening blood loss and clot formation, but dysfunction or inflammation may result in aberrant blood coagulation leading to blockages or hemorrhage.

"Abnormal blood coagulation and platelet activation are major medical problems and the ways we study them now are overly simplified," said Prof. Donald Ingber, MD, PhD, founding directlor of the Wyss Institute for Biologically Inspired Engineering at Harvard University (Boston, MA, USA), "Clinicians currently do not have tools to monitor hemostasis that take into account physiologically important interactions between endothelial cells and flowing blood."

The crucial interface between endothelial cells and circulating blood has not been replicated in a practical diagnostic device due to the challenge of incorporating living endothelial cells into a robust testing tool. In the new study, a Wyss Institute team led by Prof. Ingber has discovered that endothelial cells need not be “living” in order to confer their effects on blood coagulation. By microengineering tiny hollow channels lined by chemically fixed human endothelial cells that mimic cellular and vascular flow conditions inside a patient’s body, a new device developed by the team could monitor blood clot formation and diagnose effectiveness of anti-platelet therapy.

"It’s a bioinspired device that contains the endothelial function of a diseased patient without having actual living cells, and this greatly increases the robustness of the device," said first author Abhishek Jain, PhD, assistant professor at Texas A&M University, former Wyss Institute postdoctoral fellow.

This blood coagulation diagnostic can even be used to study the effects of endothelial inflammation on the formation of blood clots, which is highly relevant in patients suffering from atherosclerosis.

"This is one of the first examples of how a microfluidic cell culture system could have added value in clinical diagnostics,” said study co-author Andries van der Meer, PhD, former Wyss Institute postdoctoral fellow, now assistant professor at University of Twente, The Netherlands, “Using chemically fixed tissue that is no longer alive offers a clear, low-risk path toward further testing and product development."

A previous study by Prof. Ingber and team showed that recreating the physicality and blood flow of vasculature within microfluidic channels allowed them to predict precise times that blood might clot, with potential applications in real-time monitoring of patients receiving intravenous anticoagulants in order to prevent complications such as stroke and vascular occlusion. The new device adds another layer of complexity by embedding the functionality of the vascular endothelium within a diagnostic tool that might be manufactured, stored, and shipped for clinical use, which was not considered possible.

"Our efforts to mimic the vascular system in a meaningful way within a microfluidic device has led to two avenues of technology development," said Prof. Ingber, "Together they represent a new suite of physiologically relevant microdevices."

The study, by Jain A et al, was published online July 27, 2016, in the journal Biomedical Microdevices.

Related Links:
Wyss Institute for Biologically Inspired Engineering


New
Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
New
Automated MALDI-TOF MS System
EXS 3000
New
Gold Member
Hematology System
Medonic M16C
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.