We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Device Offers Potential for More Effective Blood Disorders Diagnostics

By LabMedica International staff writers
Posted on 23 Aug 2016
Print article
Image: The new device emulates the interface between the endothelium and circulating blood, opening new doors to diagnosing blood clotting diseases caused by dysfunction or inflammation of endothelial cells, which line all blood vessels and influence the process of hemostasis (Image courtesy of the Wyss Institute at Harvard University).
Image: The new device emulates the interface between the endothelium and circulating blood, opening new doors to diagnosing blood clotting diseases caused by dysfunction or inflammation of endothelial cells, which line all blood vessels and influence the process of hemostasis (Image courtesy of the Wyss Institute at Harvard University).
Researchers have developed a microfluidic device with fixed endothelial cells to mimic cellular and vascular flow conditions inside a patient’s body, which could help monitor blood clot formation, diagnose effectiveness of anti-platelet therapy, and prevent dysfunctional hemostasis.

When in dysfunction, the vascular endothelium (tissue that lines the blood vessels) plays a major role in the development of many diseases because endothelial cells are sensitive to blood flow and interact with blood cells through surface molecules. In normal hemostasis, the endothelium prevents life-threatening blood loss and clot formation, but dysfunction or inflammation may result in aberrant blood coagulation leading to blockages or hemorrhage.

"Abnormal blood coagulation and platelet activation are major medical problems and the ways we study them now are overly simplified," said Prof. Donald Ingber, MD, PhD, founding directlor of the Wyss Institute for Biologically Inspired Engineering at Harvard University (Boston, MA, USA), "Clinicians currently do not have tools to monitor hemostasis that take into account physiologically important interactions between endothelial cells and flowing blood."

The crucial interface between endothelial cells and circulating blood has not been replicated in a practical diagnostic device due to the challenge of incorporating living endothelial cells into a robust testing tool. In the new study, a Wyss Institute team led by Prof. Ingber has discovered that endothelial cells need not be “living” in order to confer their effects on blood coagulation. By microengineering tiny hollow channels lined by chemically fixed human endothelial cells that mimic cellular and vascular flow conditions inside a patient’s body, a new device developed by the team could monitor blood clot formation and diagnose effectiveness of anti-platelet therapy.

"It’s a bioinspired device that contains the endothelial function of a diseased patient without having actual living cells, and this greatly increases the robustness of the device," said first author Abhishek Jain, PhD, assistant professor at Texas A&M University, former Wyss Institute postdoctoral fellow.

This blood coagulation diagnostic can even be used to study the effects of endothelial inflammation on the formation of blood clots, which is highly relevant in patients suffering from atherosclerosis.

"This is one of the first examples of how a microfluidic cell culture system could have added value in clinical diagnostics,” said study co-author Andries van der Meer, PhD, former Wyss Institute postdoctoral fellow, now assistant professor at University of Twente, The Netherlands, “Using chemically fixed tissue that is no longer alive offers a clear, low-risk path toward further testing and product development."

A previous study by Prof. Ingber and team showed that recreating the physicality and blood flow of vasculature within microfluidic channels allowed them to predict precise times that blood might clot, with potential applications in real-time monitoring of patients receiving intravenous anticoagulants in order to prevent complications such as stroke and vascular occlusion. The new device adds another layer of complexity by embedding the functionality of the vascular endothelium within a diagnostic tool that might be manufactured, stored, and shipped for clinical use, which was not considered possible.

"Our efforts to mimic the vascular system in a meaningful way within a microfluidic device has led to two avenues of technology development," said Prof. Ingber, "Together they represent a new suite of physiologically relevant microdevices."

The study, by Jain A et al, was published online July 27, 2016, in the journal Biomedical Microdevices.

Related Links:
Wyss Institute for Biologically Inspired Engineering

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.