We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Cancer Risk Assessed by Circulating Protein Biomarker Panel

By LabMedica International staff writers
Posted on 10 Aug 2018
The question has been asked whether a risk prediction model based on circulating protein biomarkers improve on a traditional risk prediction model for lung cancer and the current USA screening criteria.

Current screening criteria for lung cancer risk assessments often miss a large proportion of cases. More...
It has recently been suggested that a panel of specific circulating protein biomarkers may improve lung cancer risk assessment and may be used to define eligibility for computed tomography screening.

A large international consortium of scientists led by International Agency for Research on Cancer (Lyon, France) collected prediagnostic samples from 108 ever-smoking patients with lung cancer diagnosed within one year after blood collection and samples from 216 smoking-matched controls from the Carotene and Retinol Efficacy Trial (CARET) cohort. The samples were used to develop a biomarker risk score based on four proteins (cancer antigen 125 [CA125], carcinoembryonic antigen [CEA], cytokeratin-19 fragment [CYFRA 21-1], and the precursor form of surfactant protein B [Pro-SFTPB]). The biomarker score was subsequently validated blindly using absolute risk estimates among 63 ever-smoking patients with lung cancer diagnosed within one year after blood collection and 90 matched controls from two large European population-based cohorts.

In the validation study of 63 ever-smoking patients with lung cancer and 90 matched controls (age, 57.7 ± 8.7 years; 68.6% men) from the cohorts, an integrated risk prediction model that combined smoking exposure with the biomarker score yielded an AUC of 0.83 (95% CI, 0.76-0.90) compared with 0.73 (95% CI, 0.64-0.82) for a model based on smoking exposure alone. With an overall specificity of 0.83, based on the US Preventive Services Task Force (USPSTF) screening criteria, the sensitivity of the integrated risk model was 0.63 compared to 0.43 for the smoking model. Additionally, at an overall sensitivity of 0.41 the integrated risk model yielded a specificity of 0.95 compared with 0.86 for the smoking model, based on the USPSTF screening criteria.

The authors concluded that these improvements in sensitivity and specificity were consistently observed across each evaluated stratum. Their findings also indicated that the improvement in discrimination afforded by the biomarker score is more modest beyond the initial year after blood draw, which suggests that an annual biomarker test may be necessary in a screening program. The study was published on July 12, 2018, in the journal JAMA Oncology.

Related Links:
International Agency for Research on Cancer


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Monarch Mag Cell-free DNA (cfDNA) Extraction Kit provides isolation of low-abundance cfDNA from a range of biofluids (Photo courtesy of New England Biolabs)

New Extraction Kit Enables Consistent, Scalable cfDNA Isolation from Multiple Biofluids

Circulating cell-free DNA (cfDNA) found in plasma, serum, urine, and cerebrospinal fluid is typically present at low concentrations and is often highly fragmented, making efficient recovery challenging... Read more

Immunology

view channel
Image: The TmS computational biomarker analyzes tumor gene expression and microenvironment data to guide treatment decisions (Photo courtesy of MD Anderson Cancer Center)

New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer

Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read more

Pathology

view channel
Image: The innovative classifier can guide treatment for PDAC and other immunotherapy-resistant cancers (Photo courtesy of Adobe Stock))

Single Sample Classifier Predicts Cancer-Associated Fibroblast Subtypes in Patient Samples

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers, in part because of its dense tumor microenvironment that influences how tumors grow and respond to treatment.... Read more

Industry

view channel
Image: QuidelOrtho has entered into a strategic supply agreement with Lifotronic to expand its global immunoassay portfolio (Photo courtesy of QuidelOrtho)

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.