We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Measurement of Omega-3 Fatty Acids More Reliable in Red Blood Cells Than in Plasma

By LabMedica International staff writers
Posted on 17 Jul 2013
Print article
Findings released in a recently published study showed that omega-3 fatty acid levels in red blood cells were less susceptible to dietary influences and, therefore, represented a better matrix for its measurement than did plasma.

Investigators at Health Diagnostic Laboratory, Inc. (Richmond, VA, USA) compared the affect of dietary fish oil and fish oil supplements on measurement of blood omega-3 fatty acid levels in a study population comprising 20 healthy volunteers.

The volunteers were given four capsules containing 3.6 grams of omega-3 fatty acids alongside a standard breakfast. Blood samples were drawn six times over the course of 24 hours, and the investigators monitored eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels in plasma and red blood cells. At six hours after capsule intake, the plasma concentration of EPA and DHA had increased by 47%, while the plasma EPA and DHA percentage of total fatty acids increased by 19%. In contrast, levels of EPA and DHA in red blood cells did not change from baseline values. By 24 hours after capsule intake, plasma EPA and DHA levels were 10-fold greater than those in red blood cells.

"Although some experts question the value of omega-3 fatty acid supplementation for reducing risk of coronary heart disease, medical testing for omega-3 fatty acid status has become more common and clinicians have a choice of whether to use red blood cell or plasma-based assays," said senior author Dr. William S. Harris, a senior research scientist at Health Diagnostic Laboratory, Inc. "While different assays have different performance characteristics, fasting requirements, and sensitivities, it is important for clinicians to choose the appropriate testing method. This research backs our hypothesis that the red blood cell omega-3 assay is the preferred sample type for the assessment of fatty acids in the body."

The study was published in the May 9, 2013, online edition of the Journal of Clinical Lipidology.

Related Links:
Health Diagnostic Laboratory, Inc.


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Molecular Diagnostics

view channel
Image: Health Canada has approved SPINEstat, a first-in-class diagnostic blood test for axSpA, as a Class II medical device (Photo courtesy of Augurex)

First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis

Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.