We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Urine Test Detects Changes in Bone Mineral Balance

By LabMedica International staff writers
Posted on 27 Jun 2012
An innovative technique has been introduced that is more sensitive in detecting bone loss than the X-ray method used today, and with less risk to patients. More...


With the novel technique, bone loss is detected by carefully analyzing the isotopes of the chemical element calcium that are naturally present in urine and eventually it may find use in clinical settings, and could pave the way for additional innovative biosignatures to detect disease.

The technique makes use of a fact that has been exploited by scientists at Arizona State University (ASU; Tempe, AZ, USA), but seldom used in biomedicine. This is that different isotopes of a chemical element can react at slightly different rates. When bones form, the lighter isotopes of calcium enter bone a little faster than the heavier isotopes. That difference, called isotope fractionation, is the key. Isotope abundances were measured by multiple-collector inductively coupled plasma mass spectrometry (ICP-MS, Thermo Scientific; Waltham, MA, USA).

Patients do not need to ingest any artificial tracers and are not exposed to any radiation, so there is virtually no risk to them. The study examined calcium isotopes in the urine of a dozen healthy subjects confined to bed for 30 days. Whenever a person lies down, the weight-bearing bones of the body, such as those in the spine and leg, are relieved of their burden, a condition known as "skeletal unloading.” With skeletal unloading, bones start to deteriorate due to increased destruction. Extended periods of bed rest induce bone loss similar to that experienced by osteoporosis patients, and astronauts.

Urine samples were collected at time points throughout the study to examine short-term variations in calcium isotope abundances either from analyses of 24-h pooled samples or in some cases, on all individual voids throughout the day. Laboratory analysis of the subjects’ urine samples revealed that the technique can detect bone loss after as little as one week of bed rest, long before changes in bone density are detectable by the conventional approach, dual-energy X-ray absorptiometry (DEXA). Importantly, it is the only method, other than DEXA, that directly measures net bone loss.

Anna Barker, PhD, director of Transformative Healthcare Networks at ASU, said, "The concept of inorganic signatures represents a new and exciting approach to diagnosing, treating, and monitoring complex diseases such as cancer. There is an opportunity to create an entirely new generation of diagnostics for cancer and other diseases." The study was published on May 31, 2012, in the Proceedings of the National Academy of Science of the United States (PNAS).

Related Links:
Arizona State University
Thermo Scientific



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Collection and Transport System
PurSafe Plus®
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Mizzou researcher Jimi Cook is on a mission to find a ‘crystal ball’ to predict who will benefit most from cartilage transplant surgery (Photo courtesy of University of Missouri)

Urine Test Could Predict Outcome of Cartilage Transplant Surgery

Cartilage transplant surgery provides an alternative to artificial joint replacements by using donor tissue to restore knee function. While many patients benefit, outcomes can vary, leaving uncertainty... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.