We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

By LabMedica International staff writers
Posted on 01 Oct 2024
Print article
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide quicker results but often lack the sensitivity and accuracy of PCR. Now, a new method that combines confocal fluorescence microscopy with microfluidic laminar flow marks a significant advancement in virus detection. Unlike traditional PCR, this innovative approach can rapidly detect individual virus particles cost-effectively, using a 3D-printed microscopy technology called Brick-MIC. This method boosts both sensitivity and specificity in virus detection, potentially transforming how viral outbreaks are monitored and managed. Its portable and user-friendly design makes it well-suited for wider clinical applications, strengthening public health responses to emerging viral challenges.

The breakthrough virus detection method developed by a group of researchers that included scientists from The Hebrew University of Jerusalem (Rehovot, Israel) uses laminar flow in a microfluidic channel along with fluorescence signals from free dyes and labeled antibodies to reveal key characteristics of nanoparticles. The team demonstrated the method's accuracy by testing it on fluorescent beads and various viruses, including the SARS-CoV-2 Spike protein. One of the key elements of this new assay is the use of hydrodynamic focusing, which significantly enhances sensitivity, enabling virus detection at clinically relevant concentrations.

Its portability and the use of the affordable 3D-printed Brick-MIC setup make it accessible for clinical environments. This innovation signals a shift toward rapid and precise virus detection, in line with personalized healthcare principles. By enabling fast, specific identification of viruses, this technology could help tailor medical interventions to individual patient needs, improving the timeliness and effectiveness of treatments. The research was published in iScience, with the 3D-printed microscopy approach detailed in Science Advances.

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Unit-Dose Packaging solution
HLX
New
Vedolizumab ELISA
RIDASCREEN VDZ Monitoring
New
Clostridium Difficile Test
VIDITEST C. Difficile Toxin A+B (Card) Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)

Simple Blood Draw Helps Diagnose Lung Cancer 10 Times Faster

Once dismissed as cellular waste, exosomes—tiny vesicles released by cells containing proteins, DNA, or RNA fragments—have emerged as vital players in cell-to-cell communication over the past decade.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.