We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Hollow Microprobe Array Enables Isolation and Manipulation of Single Cells

By LabMedica International staff writers
Posted on 05 May 2015
Print article
Image: The photograph shows a silicon wafer microprobe array and a single cell isolated in a microwell (Photo courtesy of Toyohashi University of Technology).
Image: The photograph shows a silicon wafer microprobe array and a single cell isolated in a microwell (Photo courtesy of Toyohashi University of Technology).
A team of Japanese biomechanical engineers has developed a novel technique for isolating and manipulating single cells.

Investigators at Toyohashi University of Technology (Japan) used microelectromechanical systems fabrication technology to construct an array of hollow probes for the manipulation of single cells. They conducted a cell aspiration experiment with a glass pipette and modeled a cell using a standard linear solid model, which provided information for designing hollow stepped probes for minimally invasive single-cell manipulation.

The investigators etched a silicon wafer on both sides and formed holes with stepped structures that passed through the wafer. In order to trap cells, the inner diameters of the holes were reduced by plasma-enhanced chemical vapor deposition of SiO2. This fabrication process facilitated control of wall thickness, inner diameter, and outer diameter of the probes.

In experiments conducted with the fabricated probes, single cells were manipulated and placed in microwells at a single-cell level in a parallel manner. The investigators studied the capture, release, and survival rates of cells at different suction and release pressures. They reported in the March 2015 online edition of the journal Biomedical Microdevices that the cell trapping rate was directly proportional to the suction pressure, whereas the release rate and viability decreased with increasing the suction pressure. The proposed manipulation system allowed placement of cells in a well array for observance of adherence, spreading, culture, and death of the cells.

"We fabricated an array of hollow microprobes with designed diameters, heights, and numbers from a silicon substrate using microfabrication techniques," said first author Dr. Moeto Nagai, assistant professor of biomechanical engineering at Toyohashi University of Technology. "Single cells were trapped on the tips of the probes using a suction flow. The cells were then released and placed in an array of microwells. Parallel and versatile cell manipulation tools are essential for biomedical innovation, and microfabrication technologies offer massively parallel microstructures close to a human cell in size."

Related Links:
Toyohashi University of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.