We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Drug-Target Database and Algorithm Help Match Old Drugs to New Uses

By LabMedica International staff writers
Posted on 10 Jun 2014
A new database is helping scientists match existing drugs to genetic targets in new diseases. More...


There are a large number of drugs that silence many thousands of cancer-causing genetic abnormalities. Some of these drugs are in use now, but many of these drugs are not being used or could be used beyond the disease for which they were first approved. Repurposing these drugs depends on matching drugs to targets. A study published May 7, 2014, in the journal Bioinformatics reported on a new database and pattern-matching algorithm that allows researchers to assess reasonable drugs and drug combinations, and also recommends a new drug combination to treat drug-resistant non-small-cell lung cancer.

“Most cancers have more than one genetic alternation. And even genetically targeted drugs tend to affect more than only their stated target. And so the challenge is matching drugs with many effects to cancers with many causes in a way that best maps the drugs’ effects onto the intended targets,” stated Aik Choon Tan, PhD, an investigator at the University of Colorado (CU) Cancer Center (Denver, USA) and associate professor of bioinformatics at the CU School of Medicine.

There are approximately 500 kinases in the human genome, each of which represents a potentially important drug target. Dr. Tan portrayed the database as a spreadsheet with 500 columns, each column representing a kinase. Heading each row is a drug and then in each column cell is that drug’s activity against the kinase. “Imagine you know a cancer is caused by five kinases acting in unison,” Dr. Tan noted. “Our approach would allow you to query the database for this pattern and discover the drug or combination of drugs that best match the genetic needs.”

Because many of these drugs have already earned US Food and Drug Administration (FDA) approval for use in other diseases, the processes of repositioning these drugs for new diseases is much less involved and costly than if drug developers had started fresh. Dr. Tan and colleagues put the technique to use to recommend drugs that could turn off the kinases that non-small-cell lung cancer uses to create resistance to existing treatments. It has been a key conundrum—many lung tumors depend on over-activation of the gene EGFR (epidermal growth factor receptor), but then when EGFR inhibitors such as gefitinib or erlotinib are used, the cancers tend to trigger other “kinases” that allow the cancer to bypass around this dependence. Dr. Tan and colleagues explored what exactly are these kinases that allow lung cancer to evade gefitinib, and what other drug might inactivate them.

The solution may be in the drug bosutinib, developed by Pfizer (New York, NY, USA), which earned FDA approval in 2013 for the treatment of chronic myeloid leukemia. The drug out-competes the body’s energy source, adenotriphosphate (ATP), for space in kinases and so keeps them from being activated. Furthermore, bosutinib may suppress the activity of exactly the kinases that EGFR-dependent lung cancers require to mutate around the challenge of EGFR inhibitors.

In research on EGFR-dependent lung cancer cell lines, Dr. Tan and colleagues show that the drugs gefitinib and bosutinib “showed additive and synergistic effects.”
In a mechanism that Dr. Tan hopes will become common, his group will now provide data about this rational combination to other researchers at the CU Cancer Center and elsewhere who will help move the drugs toward a human clinical trial.

The K-Map database free for use and it is availble online (please see Related Links below).

Related Links:

University of Colorado Cancer Center
K-Map database



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.