We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Enzyme Identified That Promotes Aggressive Forms of Pancreatic Cancer

By LabMedica International staff writers
Posted on 03 Jun 2014
Cancer researchers have identified an enzyme that seems to cause pancreatic tumors to act in a much more aggressive – and therefore lethal – fashion.

Pancreatic cancer is not uniformly aggressive, and some patients have a relatively better outcome. More...
Why this should be, has been the subject of research carried out at the Mayo Clinic (Jacksonville, FL, USA). The investigators were particularly interested in understanding why pancreatic cancer cells produce matrix metalloproteinases (MMPs), since most MMPs are made by cells that surround and support a tumor, not by the tumor itself. Enzymes of the MMP family are involved in the breakdown of extracellular matrix and during tissue remodeling in normal physiological processes such as embryonic development and reproduction, as well as in disease processes such as arthritis and tumor metastasis.

The investigators reported in the May 21, 2014, online edition of the journal Molecular Cancer Research that matrix metalloproteinase-3 (MMP3) was found to be associated with the expression of the enzyme Rac1b, a tumorigenic splice isoform of Rac1, in all stages of pancreatic cancer.

Rac1, also known as Ras-related C3 botulinum toxin substrate 1, is a protein encoded by the RAC1 gene. This gene can produce a variety of alternatively spliced versions of the Rac1 protein, which appear to carry out different functions. Rac1 is thought to play a significant role in the development of various cancers, including melanoma and non-small-cell lung cancer. As a result, it is now considered a therapeutic target for these diseases. Rac1 is a small (approximately 21 kDa) signaling G-protein (more specifically a GTPase), and is a regulator of many cellular processes, including the cell cycle, cell-cell adhesion, motility (through the actin network), and of epithelial differentiation (proposed to be necessary for maintaining epidermal stem cells).

The investigators used a large cohort of human pancreatic cancer tissue biopsy specimens to determine that both MMP3 and Rac1b were expressed in pancreatic cancer cells, that the expression levels of the two markers were highly correlated and that the subcellular distribution of Rac1b in pancreatic cancer was significantly associated with patient outcome.

Co-expression of MMP3 with activated KRAS in pancreatic acinar cells was found to stimulate cancer cell formation and immune cell infiltration in transgenic mouse models, thus priming the stromal microenvironment for early tumor development. Furthermore, exposure of cultured pancreatic cancer cells to recombinant MMP3 stimulated expression of Rac1b, increased cellular invasiveness, and activated tumorigenic transcriptional profiles.

“The implication from our research is that Rac1b is activating unique pathways in pancreatic tumors that make this cancer aggressive. If we can therapeutically target that pathway, we may be able to have an impact on this very difficult-to-treat disease,” said senior author Dr. Derek Radisky, a Mayo Clinic researcher.

Related Links:

Mayo Clinic



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.