We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Unanticipated Link Found Between Cell Suicide and Long Life

By LabMedica International staff writers
Posted on 28 May 2014
Many health professionals believe that free radicals, the occasionally toxic molecules generated by the body as it processes oxygen, are the cause behind aging. More...
However, a number of studies recently have generated evidence that the contrary may be true.

Researchers from McGill University (Montreal, QC, Canada) have taken this finding further by showing how free radicals promote longevity in a research model organism, the roundworm Caenorhabditis elegans. Unexpectedly, the scientists discovered that free radicals (i.e., oxidants) act on a molecular mechanism that, in other surroundings, instructs a cell to kill itself.

Apoptosis is a process by which injured cells commit suicide in a range of circumstances: to avoid inducing autoimmune disease, to avoid becoming cancerous, or to kill off viruses that have invaded the cell. The key molecular mechanism by which this occurs is well conserved in all animals, but was first discovered in C. elegans—a finding that earned a Nobel Prize.

The McGill University researchers discovered that this same mechanism, when stimulated in the correct manner by free radicals, in reality strengthens the cell’s defenses and increases its longevity. Their findings were published online May 8, 2014, in the journal Cell. “People believe that free radicals are damaging and cause aging, but the so-called ‘free radical theory of aging’ is incorrect,” said Siegfried Hekimi, a professor in McGill’s department of biology, and senior author of the study. “We have turned this theory on its head by proving that free radical production increases during aging because free radicals actually combat—not cause—aging. In fact, in our model organism we can elevate free radical generation and thus induce a substantially longer life.”

The findings have significant ramifications. “Showing the actual molecular mechanisms by which free radicals can have a pro-longevity effect provides strong new evidence of their beneficial effects as signaling molecules,” Prof. Hekimi said. “It also means that apoptosis signaling can be used to stimulate mechanisms that slow down aging. Since the mechanism of apoptosis has been extensively studied in people, because of its medical importance in immunity and in cancer, a lot of pharmacological tools already exist to manipulate apoptotic signaling. But that doesn’t mean it will be easy.”

Triggering pro-longevity apoptotic signaling could be especially critical in neurodegenerative disorders, according to Prof. Hekimi. “In the brain the apoptotic signaling might be particularly tilted toward increasing the stress resistance of damaged cells rather than killing them. That’s because it is harder to replace dead neurons than other kinds of cells, partly because of the complexity of the connections between neurons.”

Related Links:

McGill University



New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.