We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Swimming Bio-Bots Designed to Traverse Biologic Aquatic Environments

By LabMedica International staff writers
Posted on 27 Jan 2014
Scientists have devised synthetic, tiny self-propelled swimming bio-bots that are able to move through the aquatic fluids of the body.

A team of engineers has developed a type of tiny bio-hybrid machines that swim similar to sperm, the first synthetic structures that can traverse the viscous fluids of biologic environments by themselves. More...
A report on the study led by Taher Saif, a University of Illinois (I of U; Urbana-Champaign, USA) professor of mechanical science and engineering, was published on January 18, 2014, in the journal Nature Communications. “Microorganisms have a whole world that we only glimpse through the microscope,” Prof. Saif said. “This is the first time that an engineered system has reached this underworld.”

The engineers started by creating the body of the bio-bot from a flexible polymer. Then they cultured heart cells near the junction of the head and the tail. The cells self-align and synchronize to beat together, sending a wave down the tail that pushes the bio-bot forward.

This self-organization is an amazing new phenomenon, according to Prof. Saif; however, how the cells talk with each other on the flexible polymer tail is yet to be effectively determined. However, the cells need to beat together, in the right direction, for the tail to move. “It’s the minimal amount of engineering—just a head and a wire,” Prof. Saif said. “Then the cells come in, interact with the structure, and make it functional.”

The researchers also constructed two-tailed bots, which they found could swim even faster. Multiple tails also creates new avenues of navigation. The researchers foresee future bots that could sense or light or chemicals and move toward a target for medical or environmental applications. “The long-term vision is simple,” said Prof. Saif, who is also from the Beckman Institute for Advanced Science and Technology at the U of I. “Could we make elementary structures and seed them with stem cells that would differentiate into smart structures to deliver drugs, perform minimally invasive surgery or target cancer?”

The swimming bio-bot project is part of a larger US National Science Foundation-supported Science and Technology Center on Emergent Behaviors in Integrated Cellular Systems, which also produced the walking bio-bots developed at Illinois in 2012.

“The most intriguing aspect of this work is that it demonstrates the capability to use computational modeling in conjunction with biological design to optimize performance, or design entirely different types of swimming bio-bots,” said center director Dr. Roger Kamm, a professor of biological and mechanical engineering at the Massachusetts Institute of Technology (MIT; Cambridge MA, USA). “This opens the field up to a tremendous diversity of possibilities--truly an exciting advance.”

Related Links:

University of Illinois



Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
PlGF Test
Quidel Triage PlGF Test
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The discovery of early markers for ovarian cancer that would have improved sensitivity could aid detection (Photo courtesy of Adobe Stock)

Highly Accurate Biomarkers Could Detect Ovarian Cancer Before Clinical Diagnosis

Ovarian cancer is a deadly and challenging disease, primarily because early detection is difficult. Most women (70-75%) are diagnosed only after the cancer has already spread, which significantly reduces... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.