We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Compound Discovered in Florida Keys Shows Potential as Colon Cancer Treatment

By LabMedica International staff writers
Posted on 01 Nov 2010
A chemical compound made from a type of bacteria discovered in the Florida Keys (USA) by a pharmacy researcher has shown effectiveness in fighting colon cancer in preclinical research.

Writing online October 2010 in the Journal of Pharmacology and Experimental Therapeutics, scientists from the University of Florida (UF; Gainesville, USA) reported that the compound--known as largazole because it was first discovered near Key Largo--suppresses human cancer cell growth in cultures and rodent models by attacking a class of enzymes involved in the packaging and structure of DNA.

More research is needed, but scientists hope that the finding will lead to new treatments for the about 50,000 people struck with colorectal cancer each year in the United States. More...
Researchers are enthusiastic because in addition to having the marine bacteria as a natural source of the chemical, they have been able to produce synthetically the active chemical compound extracted from the bacteria.

"It is challenging to develop natural marine products into drug therapies due to what is termed the ‘the supply problem,'” said Dr. Hendrik Luesch, an associate professor of medicinal chemistry in the UF College of Pharmacy. "We have solved the supply problem for largazole because it has a relatively simple structure, which has made it easy to reproduce in the lab.”

The Luesch lab discovered largazole while studying samples of bacteria from the Florida Keys, publishing the finding in 2008. Known as cyanobacteria, the microbes have evolved to fend off predators or deal with harsh conditions in a marine environment, employing toxins to aid their own survival. The toxins are the compounds chemists such as Dr. Luesch desire to isolate and understand in a quest to create drugs that similarly fend off invading cancers in the body.

Since the discovery, Dr. Luesch's lab determined the compound inhibits enzymes known as histone deacetylases (HDACs), which are linked to many diseases and are increasingly viewed as promising for cancer therapy. Dr. Jiyong Hong, an assistant professor of chemistry at Duke University (Durham, NC, USA), teamed with the UF researchers to chemically reproduce the compound for additional preclinical testing, which indicates it is a potent inhibitor of cancer cells that has the right characteristics to reach its intended target without the toxic side effects of many cancer drugs.

"Knowing HDAC is the target that makes largazole effective means we can predict good drug properties because there are already two anticancer products on the market that work this way,” said Dr. Luesch, who is a member of the UF Shands Cancer Center.

Three important features make this marine compound more promising than other natural products as an effective cancer-fighting drug, Dr. Luesch noted that availability of supply, knowing its mode of action, and the fact that its cellular target is already a known anticancer target known to result in the necessary selectivity for cancer cells over normal cells.

Dr. Luesch presented the study's findings September 9, 2010, at the Marine Drug Discovery Symposium in Pohang, South Korea, and later in Mid-October at the Marine Natural Products Symposium in Phuket, Thailand. The research is planned for publication in the November 2010 issue of the Journal of Pharmacology and Experimental Therapeutics.

Related Links:
University of Florida
Duke University



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gel Cards
DG Gel Cards
New
Specimen Radiography System
TrueView 200 Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.