We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App





Blood Test That Quantifies Protein ACE2 and ACE2 Fragments Can Monitor SARS-CoV-2 Infection

By LabMedica International staff writers
Posted on 14 Jul 2021
Print article
Illustration
Illustration
A blood test that quantifies the protein ACE2, the cellular protein which allows entry of the coronavirus into cells, as well as ACE2 fragments, produced as a result of interaction with the virus, could be a simple and effective method for monitoring SARS-CoV-2 infection.

A study carried out by the UMH-CSIC Neurosciences Institute (Alicante, Spain) during the first wave of the pandemic, found that patients with COVID-19, in the acute phase of infection, have significantly reduced plasma levels of the full-length ACE2 protein, which SARS-CoV-2 binds to enter cells, compared to non-infected controls. In addition, the plasma levels of a lower molecular mass (70 kDa) ACE2 fragment, generated as a result of interaction with the virus, are increased.

These abnormal levels of ACE2 and truncated ACE2 (70 kDa fragment) return to normal after the patients' recovery. This suggests that both forms of ACE2 present in plasma could be used as a good biomarker of the evolution of coronavirus infection. In addition, truncated ACE2 levels served to discriminate between patients infected with SARS-CoV-2 and those infected with influenza A virus. Although the main research line of the group is Alzheimer's Disease, the "similarities" of ACE2 to core proteins of Alzheimer's disease pathology, such as beta-amyloid precursor protein (APP), also cell membrane resident proteins, led the researchers to think that perhaps ACE2 could be present in plasma, providing information on its interaction with the coronavirus.

"In this work we have studied the plasma levels of the coronavirus receptor, the ACE2 protein, and we have been able to determine that there are different forms of the protein in plasma, and that part of the soluble ACE2 are proteolytic fragments of the ACE2 receptor, generated subsequently to interaction with the virus. The full-length protein is also found in plasma, which provides information about tissue affection during infection," explained Javier Sáez-Valero from the UMH-CSIC Neurosciences Institute, who led the study.

"Our approach to this research line was the possibility that soluble ACE2 protein can serve as a read-out during infection with COVID-19. This hypothesis originates from our expertise in Alzheimer's disease. In this neurodegenerative disease we investigate proteins, such as APP, that are present in the cerebrospinal fluid. APP is also a membrane protein that is processed by the same molecular tools as ACE2, enzymes called secretases, which process several membrane proteins into different fragments. This phenomenon was the clue that led us to think that ACE2 protein fragments, but also the full-length protein, are present in plasma. Thus, we have the possibility of investigating this protein as a possible biomarker," explained Sáez-Valero.

Related Links:
UMH-CSIC Neurosciences Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS-CoV-2 Test
One Step SARS-CoV-2 Nucleic Acid Detection Kit (P761H)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.