We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App





Distinct Blood Signatures Found in COVID-19 Patients Could Significantly Improve Testing

By LabMedica International staff writers
Posted on 13 Jan 2021
Print article
Illustration
Illustration
Researchers have discovered distinct blood signatures present in patients with COVID-19 that could significantly improve testing and long-term monitoring of the disease.

The research team at the Australian National Phenome Centre (ANPC) at Murdoch University (Perth, Australia) applied advanced analytical chemistry methods to study the plasma of patients suffering from COVID-19 infection and found diagnostic markers that were not present in respiratory patients that tested negative for the virus. Specifically, the research found that plasma lipoproteins – structures that transport fats around the body – in the blood of COVID-19 patients had changed dramatically during infection. They became closer to patterns typically found in patients with diabetes, atherosclerosis and cardiovascular disease.

The study involved the analysis of blood plasma samples collected from patients who presented COVID-19 disease symptoms and subsequently tested positive; healthy adults who had not exhibited COVID-19 disease symptoms; and patients with COVID-19 disease symptoms who tested negative. The samples were analyzed using state-of-the-art metabolic phenotyping technologies, which can reveal the molecular structures and quantitative bioanalysis for almost any type of biological liquid or solid. The analysis provided the unique biological ‘fingerprints’ of each sample, on which the research findings were based. The researchers believe that their work underlines the importance of long-term follow up studies on “recovered” COVID-19 patients, particularly those experiencing persistent effects, to assess their health status and take steps to mitigate any long-term effects of COVID-19 exposure.

“This work opens the door to a new type of test that does not depend on detection of the virus itself but that can help discriminate COVID-19 infections, especially when used in conjunction with conventional PCR testing,” explained Professor Jeremy Nicholson, Director of the ANPC and leader of the research. “This would increase the overall security of existing testing procedures, such as those used in quarantine situations, which may be key to future easing of State and National lock-down protocols especially with the advent of the new UK B.1.1.7 corona virus variant which is significantly more infectious and affects children more easily.”

Related Links:
Murdoch University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.