We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App





Oxford University’s Rapid COVID-19 Test Detects SARS-CoV-2 Within 30-45 Minutes

By LabMedica International staff writers
Posted on 17 Jul 2020
Print article
Image: Oxford University’s Rapid COVID-19 Test Detects SARS-CoV-2 Within 30-45 Minutes (Photo courtesy of University of Oxford)
Image: Oxford University’s Rapid COVID-19 Test Detects SARS-CoV-2 Within 30-45 Minutes (Photo courtesy of University of Oxford)
Scientists have developed a rapid test which detects the presence of the SARS-CoV-2 virus and could be adapted for use in settings ranging from community care, schools, airports or home self-testing.

The test for the detection of COVID-19 has been developed by the University of Oxford’s Department of Engineering Science and Oxford Suzhou Centre for Advanced Research (OSCAR Oxford, UK). The Oxford-OSCAR team has designed primers with high specificity to confirm presence of the virus in infected people, adapted from an established technology known as RT-LAMP (reverse transcription-loop mediated isothermal amplification). It is a simplified one-step version of a viral RNA test and can be used in the field without specialist equipment or training. The simple colorimetric result is read by eye or fluorescent display, meaning there is no need for additional tools to analyze results. A Bluetooth-linked fluorescent detection instrument can link the test result into a laboratory information system, so that test results can be tracked.

The test produces results within 30-45 minutes and detects SARS-CoV-19 with great sensitivity and specificity using throat/nasal swabs directly to identify individuals carrying the virus. Clinical trials have generated comparable results with laboratory tests, demonstrating reliability, and the results will be published shortly. The test will soon be certified with CE-mark. It will be available in quantity with the commercial product name Oxsed RaViD Direct at a cost of no more than GBP 20 per test, which is considerably cheaper than most of the products currently on market.

“By designing the specific primers and controlling the biochemical reaction, we are able to eliminate the non-specific reactions that cause false positives and make our RT-LAMP test robust. And the Oxford test can be transported and stored at ambient temperature without need for cold chain, which makes shipping and distribution much easier,” said Professor Wei Huang who designed the primers to target the viral RNA.

“Our test is ideal for use in community or field settings by lay persons and allows immediate decisions to be made. Immediate applications are: returning to work/education (i.e. schools, universities, companies) and making quarantine decision (e.g. care homes, hospitals, temporary migrants, tourists). Use of such a test could be crucial to economic recovery globally,” said Prof Zhanfeng Cui, the Director of OSCAR.

Related Links:
University of Oxford

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.