We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Novel Microprotein Functions in Messenger RNA Removal Complex

By LabMedica International staff writers
Posted on 15 Dec 2016
Print article
Image: Human kidney cells stained with a P-body marker (red) and NoBody (green). Yellow dots are where P-bodies and NoBody interact. Cell nuclei are shown in blue (Photo courtesy of Yale University).
Image: Human kidney cells stained with a P-body marker (red) and NoBody (green). Yellow dots are where P-bodies and NoBody interact. Cell nuclei are shown in blue (Photo courtesy of Yale University).
A novel "microprotein" has been identified and shown to fulfill a cellular maintenance function by prepping nonessential messenger RNA (mRNA) for destruction and removal from the cytoplasm.

MicroProteins are short single-domain proteins that possess the ability to interfere with larger multi-domain proteins. These protein species can be identified in plants and animals where they evolved from large proteins by successive domain-loss. In previous studies proteomic detection of non-annotated microproteins indicated the translation of hundreds of small open reading frames (smORFs) in human cells, but whether these microproteins had any function was unknown.

Investigators at Yale University (New Haven, CT, USA) located a clutch of microproteins by extracting the large proteins from myeloid leukemia cells and then using liquid chromatography-mass spectroscopy proteomics to determine the amino acid sequences of all remaining small proteins.

They reported in the December 5, 2016, online edition of the journal Nature Chemical Biology that they had identified a 7000 Dalton human microprotein that interacted with mRNA decapping proteins, which remove the 5′ cap from mRNAs to promote 5′-to-3′ decay. Decapping proteins participate in mRNA turnover and nonsense-mediated decay (NMD). The investigators called their novel microprotein "non-annotated P-body dissociating polypeptide" or NoBody.

The investigators found that NoBody localized to mRNA-decay-associated RNA-protein granules called P-bodies. However, the amount of NoBody was not dependent of the number of cellular P-body elements. These results implicated NoBody as a novel component of the mRNA decapping complex and demonstrated the potential functionality of a newly discovered microprotein.

"The broadest significance of this work is that even in a well-studied biological process, a microprotein has been right there under our noses, undetected, all this time," said senior author Dr. Sarah Slavoff, assistant professor of chemistry, molecular biophysics, and biochemistry at Yale University.

Related Links:
Yale University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.