We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

By LabMedica International staff writers
Posted on 02 May 2024
Print article
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic imaging such as MRI scans, family medical history, demographic data, and other risk factor evaluations. Often, neurologists only discover that a patient is at risk after they have experienced a stroke or a warning cerebral event. Now, a simple blood test offers the potential for doctors to identify individuals at increased risk for stroke or cognitive decline by measuring levels of a network of inflammatory molecules, which helps calculate a risk score for susceptibility to cerebral small vessel disease.

Researchers at UCLA Health (Los Angeles, CA, USA) have developed a method to measure the concentrations of these inflammatory molecules in individuals who have not yet suffered a cerebrovascular event, thereby providing a quantitative tool to assess the risk for cerebral small vessel disease and potential future strokes. This approach centers around the interleukin-18, or IL-18, network of inflammatory molecules, which includes proteins and signaling molecules that combat various infections. Previous studies have associated certain molecules within the IL-18 network with an increased risk of cerebral small vessel disease and stroke. However, the levels of these molecules can vary in response to various conditions like the flu or autoimmune diseases, rendering them unreliable as sole predictors of stroke risk.

In 2020, this research team discovered that six molecules within the IL-18 network were linked to the presence of vascular brain injuries in MRI scans. Building on these insights, they explored whether the IL-18 network could be used to evaluate a person's likelihood of stroke or cognitive decline. They utilized health data from the long-standing Framingham Heart Study, which has been monitoring the medical histories of residents from Framingham, Massachusetts since its inception in 1948. Blood samples from study participants were analyzed for five of the six molecules identified as part of the IL-18 network.

Using these blood samples and the comprehensive medical histories from the Framingham study, the researchers devised a mathematical model that calculates a risk score based on the concentrations of IL-18 network molecules. Analysis of over 2,200 Framingham participants revealed that individuals with risk scores in the top 25% were 84% more likely to experience a stroke in their lifetime. Moreover, high-risk scores were linked with a 51% increased stroke risk, offering a predictive advantage over traditional risk assessment methods. Further research is necessary to determine whether and how an individual's risk score can be altered or mitigated.

“The same way one uses cholesterol tests to evaluate one’s future risk for heart attack, we don’t have such a thing to estimate future risk for stroke,” said Dr. Jason Hinman of the UCLA who led the study. “I believe we can do that by something as simple as a blood test which in theory can enable broader access to the best level of care and not lock it behind advanced imaging studies and specialist evaluations.”

Related Links:
UCLA Health

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.