We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

By LabMedica International staff writers
Posted on 02 May 2024

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. More...

Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic imaging such as MRI scans, family medical history, demographic data, and other risk factor evaluations. Often, neurologists only discover that a patient is at risk after they have experienced a stroke or a warning cerebral event. Now, a simple blood test offers the potential for doctors to identify individuals at increased risk for stroke or cognitive decline by measuring levels of a network of inflammatory molecules, which helps calculate a risk score for susceptibility to cerebral small vessel disease.

Researchers at UCLA Health (Los Angeles, CA, USA) have developed a method to measure the concentrations of these inflammatory molecules in individuals who have not yet suffered a cerebrovascular event, thereby providing a quantitative tool to assess the risk for cerebral small vessel disease and potential future strokes. This approach centers around the interleukin-18, or IL-18, network of inflammatory molecules, which includes proteins and signaling molecules that combat various infections. Previous studies have associated certain molecules within the IL-18 network with an increased risk of cerebral small vessel disease and stroke. However, the levels of these molecules can vary in response to various conditions like the flu or autoimmune diseases, rendering them unreliable as sole predictors of stroke risk.

In 2020, this research team discovered that six molecules within the IL-18 network were linked to the presence of vascular brain injuries in MRI scans. Building on these insights, they explored whether the IL-18 network could be used to evaluate a person's likelihood of stroke or cognitive decline. They utilized health data from the long-standing Framingham Heart Study, which has been monitoring the medical histories of residents from Framingham, Massachusetts since its inception in 1948. Blood samples from study participants were analyzed for five of the six molecules identified as part of the IL-18 network.

Using these blood samples and the comprehensive medical histories from the Framingham study, the researchers devised a mathematical model that calculates a risk score based on the concentrations of IL-18 network molecules. Analysis of over 2,200 Framingham participants revealed that individuals with risk scores in the top 25% were 84% more likely to experience a stroke in their lifetime. Moreover, high-risk scores were linked with a 51% increased stroke risk, offering a predictive advantage over traditional risk assessment methods. Further research is necessary to determine whether and how an individual's risk score can be altered or mitigated.

“The same way one uses cholesterol tests to evaluate one’s future risk for heart attack, we don’t have such a thing to estimate future risk for stroke,” said Dr. Jason Hinman of the UCLA who led the study. “I believe we can do that by something as simple as a blood test which in theory can enable broader access to the best level of care and not lock it behind advanced imaging studies and specialist evaluations.”

Related Links:
UCLA Health


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The enhanced collaboration builds upon the successful launch of the AmplideX Nanopore Carrier Plus Kit in March 2025 (Photo courtesy of Bio-Techne)

Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.