We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

By LabMedica International staff writers
Posted on 01 May 2024
Print article
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead to blood cancers. Interestingly, it is also present in individuals with normal blood counts, where it is linked with a heightened risk of severe atherosclerotic cardiovascular disease. Studies have shown that clonal hematopoiesis becomes more common with age, being detectable in up to 15% of individuals over 70. While it can progress to malignant blood diseases, its significant impact is the reduction in life expectancy due to an increased risk of atherosclerotic cardiovascular disease, which at its advanced stage, can cause heart attacks and strokes due to arterial blockages.

Now, a research team at the Medical University of Vienna (Vienna, Austria) has designed a genetic testing method for detecting clonal hematopoiesis. Combined with an ultrasound examination of the carotid artery, this testing approach can identify individuals at high risk for cardiovascular disease. For their research, the team focused on the impact of clonal hematopoiesis on patients with asymptomatic, verified carotid stenosis—a narrowing of the carotid artery due to atherosclerosis. They developed a novel assay employing high-throughput DNA sequencing for targeted genetic testing to detect mutations that cause clonal hematopoiesis. This testing method was applied to around 1,000 blood samples from the ICARAS study (Inflammation and Carotid Artery-Risk for Atherosclerosis Study).

The study revealed a significant increase in mortality among patients who have both carotid stenosis and clonal hematopoiesis. The joint detection of clonal hematopoiesis and carotid atherosclerosis led to the identification of a new combined biomarker that enhances the personalization of cardiovascular risk profiles. This allows for the early identification of high-risk patients, which in turn facilitates the timely adjustment of treatment plans and the prevention of the progression of atherosclerotic diseases, thereby reducing the incidence of strokes and heart attacks.

By utilizing ultrasound-based duplex sonography along with this innovative genetic testing, elevated cardiovascular risk can now be detected well before any symptoms of the disease appear. According to the researchers, “the results of this study provide the basis for future studies to investigate the role of clonal haematopoiesis in cardiovascular diseases", with the goal of implementing such genetic diagnostics in laboratory medicine.

Related Links:
Medical University of Vienna

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Multi-Channel Pipettor
BioPette Plus
New
PAPP-A Test
PAPP-A Mass Units AccuBind ELISA

Print article

Channels

Immunology

view channel

3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read more

Pathology

view channel
Image: The OmicsFootPrint AI tool could open doors to new discoveries (Photo courtesy of Mayo Clinic)

Revolutionary AI Tool Transforms Disease Visualization

Genes serve as the body's blueprint, while proteins execute the instructions within those blueprints to maintain cell function. Occasionally, alterations in these instructions—known as mutations—can interfere... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.