We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Report Describes Mechanism Underlying Genetic Eye Disease

By Gerald M. Slutzky, PhD
Posted on 15 Nov 2016
Print article
Image: The XLRS is caused by mutations in the retinal protein retinoschisin. The protein plays a crucial role in the cellular organization of the retina, assembling itself to form paired octameric (consisting of eight retinoschisin) rings. The rings each resemble an eight-bladed propeller (Photo courtesy of the University of Manchester).
Image: The XLRS is caused by mutations in the retinal protein retinoschisin. The protein plays a crucial role in the cellular organization of the retina, assembling itself to form paired octameric (consisting of eight retinoschisin) rings. The rings each resemble an eight-bladed propeller (Photo courtesy of the University of Manchester).
The molecular mechanism responsible for the genetic eye disease X-linked Retinoschisis (XLRS), which leads to a type of macular degeneration in which the inner layers of the retina split causing severe loss of vision and gradual blindness, was described in a recent publication.

XLRS is caused by a mutation in retinoschisin, an octameric retinal-specific protein that is essential for the maintenance of the retinal architecture. Investigators at the University of Manchester (United Kingdom) investigated the structure of the retinoschisin monomer and the impact of two XLRS-causing mutants using a combinatorial approach of biophysics and cryo-EM. Cryo-electron microscopy (cryo-EM) allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

The investigators reported in the October 23, 2016, online edition of the journal Human Molecular Genetics that the retinoschisin monomer had an elongated structure, which persisted in the octameric assembly. Retinoschisin formed a dimer of octamers with each octameric ring adopting a planar propeller structure. Comparison of the octamer with the hexadecamer structure indicated little conformational change in the retinoschisin octamer upon dimerization, suggesting that the octamer provided a stable interface for construction of the hexadecamer.

The H207Q XLRS-associated mutation was found in the interface between octamers and destabilized both monomeric and octameric retinoschisin. Octamer dimerization was consistent with the adhesive function of retinoschisin supporting interactions between retinal cell layers, so disassembly would prevent structural coupling between opposing membranes. In contrast, cryo-EM structural analysis of the R141H mutation at approximately 4.2 angstrom resolution was found to only cause a subtle conformational change in the propeller tips, potentially perturbing an interaction site.

"We found that one disease-causing mutation sits in the interface between the octamer rings, causing retinoschisin to be less stable," said senior author Dr. Clair Baldock, professor of biochemistry at The University of Manchester. "The other mutation is on the propeller tip which we think is a novel interaction site for other binding proteins in the retina. XLRS is a promising candidate for gene therapy, so our findings on these two different classes of mutations will be informative for future therapeutic strategies."

Related Links:
University of Manchester


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.