We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Fungi Exposed to Valproic Acid Produce Substances with Potential Antibiotic Properties

By LabMedica International staff writers
Posted on 27 Jul 2016
Print article
Image: Fungi can be stimulated with distinct substances for production of antibiotic metabolic products (Photo courtesy of BiMM Research).
Image: Fungi can be stimulated with distinct substances for production of antibiotic metabolic products (Photo courtesy of BiMM Research).
Drug developers have used valproic acid (VPA) to coax various types of fungi to produce "cryptic" bioactive molecules, some of which have potential as antibiotic agents.

Valproic acid is used primarily to treat epilepsy and bipolar disorder. It is also used to prevent migraine headaches. An entirely different application is its use to induce fungi to produce bioactive compounds.

In recent years there has been increased interest in fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These speculated metabolites could include novel bioactive compounds such as antibiotics.

Investigators at the University of Veterinary Medicine (Vienna, Austria) reported in the April 13, 2016, online edition of the journal Frontiers in Microbiology that the supernatant of the fungus Doratomyces microsporus treated with VPA displayed antimicrobial activity against Staphylococcus aureus and two methicillin resistant clinical S. aureus isolates.

VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore, three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds.

The compound cPM, which was isolated from fungi for the first time, was able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains.

"Fungi can even deactivate the respective parts of their genome if a metabolite is not needed anymore. These compounds cannot be detected any longer and are classified as cryptic compounds," said first author Dr. Christoph Zutz, a researcher at the University of Veterinary Medicine. "Unlike industrial enterprises, we investigate all promising metabolites in microorganisms, not only single chemical compounds. Thus, we consider known and cryptic compounds in our analyses."

The study was conducted in conjunction with the new "Bioactive Microbial Metabolites" research platform or BiMM (Tulln, Austria).

"Valproic acid is not the only way to gain active compounds from fungi or other microorganisms. You can also make bacteria and fungi grow together. This also leads to a natural stimulus," said Dr. Joseph Strauss, head of BiMM.

Related Links:
University of Veterinary Medicine
BiMM
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.