We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Drug Augmented, Light-Activated Nanoparticles Effectively Kill Cancer Cells

By LabMedica International staff writers
Posted on 28 Jul 2015
Print article
Image: Using a transmission electron microscope (TEM): (A) a bare nanoparticle, (B) a nanoparticle prepared for coating and (C) a nanoparticle coated with a thin layer of drug-delivering hydrogels (Photo courtesy of Dr. Jennifer West, Duke University).
Image: Using a transmission electron microscope (TEM): (A) a bare nanoparticle, (B) a nanoparticle prepared for coating and (C) a nanoparticle coated with a thin layer of drug-delivering hydrogels (Photo courtesy of Dr. Jennifer West, Duke University).
Image: The cells in this image have turned fluorescent pink, showing that the new drug delivery system results in high cellular uptake after being irradiated by near infrared light (Photo courtesy of Dr. Jennifer West, Duke University).
Image: The cells in this image have turned fluorescent pink, showing that the new drug delivery system results in high cellular uptake after being irradiated by near infrared light (Photo courtesy of Dr. Jennifer West, Duke University).
The inclusion of a chemotherapeutic agent within a novel class of light-sensitive nanoparticles enhanced their ability to kill cancer cells.

Investigators at Duke University (Durham, NC, USA) have been working with light-activated nanoparticles that they fabricated by synthesizing a thin, thermally responsive poly(N-isopropylacrylamide-co-acrylamide) hydrogel coating directly onto the surfaces of individual near-infrared (NIR) absorbing gold-silica nanoshells.

This hydrogel was designed to be in a swollen state under physiological conditions and expel large amounts of water, along with any entrapped drug, at elevated temperatures. The required temperature change was achieved via NIR absorption by the nanoshell, allowing the hydrogel phase change to be triggered by light, which was observed by monitoring changes in particle sizes as water was expelled from the hydrogel network.

As a further refinement, the investigators used these light sensitive nanoparticles as carriers to deliver the chemotherapeutic drug doxorubicin (DOX). Although in use for more than 40 years as a primary chemotherapy drug, DOX is known to cause serious heart problems. To prevent these, doctors may limit the amount of DOX given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of DOX in treating cancer.

Results published in the June 10, 2015, online edition of the journal ACS Biomaterials Science & Engineering revealed that exposure to NIR light triggered rapid release of doxorubicin from the nanoparticle delivery vehicles. Colon carcinoma cells exposed to the irradiated platform displayed nearly three times as much doxorubicin uptake as cells exposed to non-irradiated particles or free drug, which in turn resulted in a higher loss of cell viability. The increased uptake of DOX might have been due to the NIR-mediated heating of the nanoparticles, which caused a transient increase in cell membrane permeability, thus aiding in cellular uptake of the drug.

"The idea is to combine tumor-destroying heat therapy with localized drug delivery, so that you can hopefully have the most effective treatment possible," said senior author Dr. Jennifer West, professor of bioengineering at Duke University. "And many chemotherapeutic drugs have been shown to be more effective in heated tissue, so there's a potential synergy between the two approaches. The hydrogels can release drugs just above body temperature, so you could potentially look at this for other drug-delivery applications where you do not necessarily want to destroy the tissue. You could do a milder warming and still trigger the drug release."

The potential use of light-sensitive nanoparticle therapy is being investigated for several types of cancers at Nanospectra Biosciences, Inc. (Houston, TX, USA), a company founded by Dr. West.

Related Links:

Duke University
Nanospectra Biosciences, Inc.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The utilization of liquid biopsies in cancer research is a rapidly developing field (Photo courtesy of Lightspring/Shutterstock)

Blood Samples Enhance B-Cell Lymphoma Diagnostics and Prognosis

B-cell lymphoma is the predominant form of cancer affecting the lymphatic system, with about 30% of patients with aggressive forms of this disease experiencing relapse. Currently, the disease’s risk assessment... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.