We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Cancer Development: A Molecular Pathway Controls ErbB Signaling via PACS-2 Regulation of Recycling of the Metalloproteinase ADAM17

By LabMedica International staff writers
Posted on 13 Jul 2015
Print article
Image: Structure of the ADAM17 protein (Photo courtesy of Wikimedia Commons).
Image: Structure of the ADAM17 protein (Photo courtesy of Wikimedia Commons).
Some types of cancer are triggered by excessive ErbB signaling, and researchers have now discovered a molecular pathway that regulates this process.

The ErbB family of proteins contains four receptor tyrosine kinases, structurally related to the epidermal growth factor receptor (EGFR), its first discovered member. In humans, the family includes Her1 (EGFR, ErbB1), Her2 (Neu, ErbB2), Her3 (ErbB3), and Her4 (ErbB4). Insufficient ErbB signaling in humans is associated with the development of neurodegenerative diseases, such as multiple sclerosis and Alzheimer's disease, while excessive ErbB signaling is associated with the development of a wide variety of types of solid tumor. ErbB-1 and ErbB-2 are found in many human cancers, and their excessive signaling may be critical factors in the development and malignancy of these tumors.

Investigators at the University of Copenhagen (Denmark) were interested in how the metalloproteinase ADAM17 (ADAM metallopeptidase domain 17) activated ErbB signaling by releasing ligands from the cell surface, a key step underlying epithelial development, growth, and tumor progression.

"ADAM17 is very important to the growth of cancer tumors. It functions as a molecular pair of scissors, separating molecules from the cell's surface which then increases cell growth. The problem being that in cancer cells this growth is over-activated and so the cancer tumor grows rapidly and uncontrollably," said first author Dr. Sarah Dombernowsky, a post-doctoral researcher in the department of biomedicine at the University of Copenhagen.

Using a functional genome-wide siRNA (short interfering RNA) screen, the investigators identified the sorting protein PACS-2 (phosphofurin acidic cluster sorting protein 2) as a regulator of ADAM17 trafficking and ErbB signaling. PACS-2 is a multifunctional sorting protein that controls endoplasmic reticulum (ER)-mitochondria communication. It may also be involved in ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments.

PACS-2 loss reduced ADAM17 cell-surface levels and ADAM17-dependent ErbB ligand shedding, without apparent effects on related proteases. PACS-2 co-localized with ADAM17 on early endosomes, and PACS-2 knockdown decreased the recycling and stability of internalized ADAM17. Therefore, PACS-2 sustained ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways.

"We have discovered that the protein PACS-2 plays a big part in the transportation of ADAM17 in cells," said Dr. Dombernowsky. "ADAM17 moves in and out of the cell, but it has to remain on the surface to be able to cut off molecules and thus further growth. We have showed that without the PACS-2, ADAM17 returns less regularly to the surface; it is broken down instead. We are currently experimenting on mice to see if the cancer growth slows down, and it is our distinct expectation that it will. In the long-term, we would like to develop something that through PACS-2 allows us to fine-tune ADAM17, which could then eventually become part of a more targeted cancer treatment."

The study was published in the June 25, 2015, online edition of the journal Nature Communications.

Related Links:
University of Copenhagen


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.