We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Crystallography Study Reveals Details of Angiotensin Receptor Structure

By LabMedica International staff writers
Posted on 11 May 2015
Print article
Image: This is an illustration of the effects of angiotensin on the AT1R (vasoconstriction, high blood pressure) compared to blocking the receptor (relaxed blood vessel, normal blood pressure) (Photo courtesy of USC - the University of Southern California).
Image: This is an illustration of the effects of angiotensin on the AT1R (vasoconstriction, high blood pressure) compared to blocking the receptor (relaxed blood vessel, normal blood pressure) (Photo courtesy of USC - the University of Southern California).
Researchers working with one of the world's most powerful free-electron X-ray lasers have established the crystal structure of the protein angiotensin II type 1 receptor (AT1R), an important blood pressure regulator in the human body.

Despite being the primary regulator for blood pressure maintenance, the structural basis for AT1R ligand-binding and regulation has remained elusive, mostly due to the difficulties of growing high-quality crystals for structure determination using synchrotron radiation. However, by applying the recently developed method of serial femtosecond crystallography at an X-ray free-electron laser, investigators at the University of Southern California (Los Angeles, USA) and their colleagues at Deutsches Elektronen-Synchrotron (Hamburg, Germany) successfully determined the room-temperature crystal structure of human AT1R in complex with its selective antagonist ZD7155 at 0.29 nanometers resolution.

The investigators wrote in a paper published in the April 23, 2015, online edition of the journal Cell that the AT1R-ZD7155 complex structure revealed key structural features of AT1R and critical interactions for ZD7155 binding. Docking simulations of the clinically used AT1R blockers (ARBs) into the AT1R structure further elucidated both the common and distinct binding modes for these anti-hypertensive drugs.

"Our work represents a first step in the direction of designing tailor-made blood pressure drugs with fewer side effects," said senior author Dr. Vadim Cherezov, professor of chemistry at the University of Southern California.

Related Links:

University of Southern California
Deutsches Elektronen-Synchrotron


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.